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1. INTRODUCTION

Fundamental to the difficulty of the control optimization problem
is the physical realization of this control once the characteristics of
the optimum control are known. For example, it is well known that
optimal solutions resulting from the use of the Maximum Principle (Ref. 1)
usually involve far-end terminal conditions on the adjoint variable.
This solution then requires that the control be a function of both the
present state of the dynesmical system and of this terminal condition of
the adjoint system. Physical realization requires that the control be
a function of the state of the dynamical system or of some estimate of
this state; therefore, if the control is to be realized there must exist
some transformation which takes the adjoint terminal condition to a
state initial condition. Unfortunately for most optimization problems
this transformation either cannot be found or if it can be found it is
usually too unwieldly to use. As a result of these difficulties various

quasi-optimal schemes have been devised.

Fliigge-Lotz and Craig (Ref. 2) have devised a scheme for the minimum
effort, regulator control using a bounded control. The time required
to zero the error is a free parameter in the problem; however, for certain
fixed times the scheme gives a true optimal solution. Various assumptions
are made about the anticipated errors so that this time is chosen optimally.
This solution is basically open loop so that the control objective is
sensitive to errors made in state measurements and to disturbances
acting on the system once the measurements are made; however, by period-
ically sampling the state and treating each new sampled state as an
initial state, the loop is closed. If some of the characteristics of
the disturbances were known this type of mechanization may not and
probably would not be better than that mechanization which utilizes

those known properties of the disturbances.

In an effort to take advantage of the fact that certain characteristics
of the disturbences are known, A. M. Hopkins and P. K. C. Wang (Ref. 3)
have realized a quasi-optimal solution utilizing these known characteristics.

Their work treats the design of a relay control system required to zero
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the input-output error when the input to the control system is a random
process. Essentially, the input process is predicted and the switching
times found so that the error between the output and the predicted input,
and all of the error derivatives are zeroed in a minimum of time. This
requires among other things, that the input process has to be differ-
entiable and that the error state is near the origin, for in this case
adventage is taken of the fact that when the error state is near the
origin the minimal trajectories have at most N-1 switchings, where N

is the order of the plant. This then requires that the control system
operate in two modes; namely, one mode heing used when the error state
is near the origin and the above criterion is used and the other mode
being used when the error state is distant from the origin and then only
requiring that the control system be used to zero the error and the

error rate.

In both the solutions of Fliigge-Lotz/Craig and Hopkins/Wang, the
scheme for the realization of the quasi-optimal control has been the
same; that is, from the properties of the true optimal solutions enough
information is extracted so that a reasonably good quasi-optimal real-
ization results. The degree of "goodness" of this quasi-optimal scheme
is limited by the allowable degree of complexity of the control system

hardware.

In this study a method of solution is advanced in which certain
statistical properties of the optimal control are determined. Since
this method is different from those in use at present, it is felt that
additional information about the properties of the optimal solution will
result when this method is used and that this additional information

can be used to an advantage in the realization of a guasi-optimal schemne.

In this study it is assumed that the plant is subjected to random
disturbances so that at any time the state of the plant is a random
variable. It will be shown that, in certain cases, the optimal solution
requires that the control signal be a function of the state of the
plant; therefore, in ﬁhis study it is assumed that the state of the plant

can always be accurately determined.




The approach used in thils study is to reguire that the

contrel
signal be the output of a relay, and then to find the optimal control
signal satisfying this requirement. This approach may be used to re-
evaluate those systems which result in a relay control due to certain
approximations made during the course of the solution. In Ref. 4, for
example, the plant's impulse response is expanded into a truncated
Tegylor's series and as a result of this truncation, the optimal control
becomes a relay control. If a relay control would have been assumed

at the outset, this assumption would have allowed more information about
the actual physical system to be used during the course of the solution.

This study attempts to take advantage of this additional information.




II. PROBLEM DEFINITION

2,1 STATEMENT OF THE PROBLEM

In the formulation of the problem, a general description of the
system is given and the problem is described in a general manner; how-
ever, the solution is studied for various specialized versions of both
the system and the stated problem in order that a maximum amount of

information may be extracted from this study.

When used in this report, the expression "system" is used to denote
the plant which is to be controlled and also the inputs effecting the
performance of the plant. Among these inputs is the control itself.

The expression "dynamical system" is understood to be the system exclusive

of the inputs.

In this investigation, the design problem is to zero a given state
in a prescribed time T while requiring that a certain performance
criterion be minimized during the process. The dynamical system is
assumed to be linear with additive noise at the input. It is apparent
that it is not possible to zero the state at time T unless the effects
of the additive noise were exactly known during the interval of control;
therefore, the design criterion will be such that for a given initial
state, the average value, over a large number of trials, of the state
at time T be zero. In an effort to keep the final state within a
small hypersphere around the origin, a certain multiple of the variance
of the final state may be added to the originel performance index
which in this study is given by

E{ /Tfﬁlui(t)ldt>,

t 4Tl
o
Mathematically, this design criterion requires that

E[x(T)] =0 (2.1a)

while the performance criterion

T m
J=E | lui(t)|dt + 5?(T)Q§(T)} (2.1b)
L &

T




< a .

is minimized, wvhere

x(T) = state vector at time T (n x 1).
ul(t) = i-th element of the control vector.
Q = constant matrix ( n x n).

E = expectation operator.

2.2 THE SYSTEM

The differential equations determining the response of the system

are given by the following expression

x(t) = F x(t) + D u(t) + Bu(t) (2.2)
where

x(t) = state vector (n x 1)

u(t) = control vector (mx 1 , m <n)

w(t) = random noise vector (r x 1 , r < n)

F = constant matrix (n x n)
D = constant matrix (n x m)
B = constant matrix (n x r)

Throughout this paper, the state x(t) is considered to be an
error state so that the expressions "state" and "error state" are used

interchangeably.

It is assumed that all of the states of the dynamical system are

available for measurement and that the measurements of these states are
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not noisy.
2.3 THE CONTROL SIGNAL

Since the control signal is restrained to be the output of a relay,
the amplitude of this signal is restricted to a finite number of values.
At any given time this amplitude is a random variable as are the switching
times of this signal. 1In this sense, the control signal can be considered

to be an ensemble sample from a random process.

For convenience, only symmetrical relays will be considered. The

mathematical description of this relay is given by

u(t) = +1 for z(t) = +k (2.3a)
= -1 for z(t) < -k (2.3b)
= 0 for |z(t)| <k (2.3c)

where k 2 0 . This relay is shown in Fig. 2.1 where the signal z(t)

is the input to the relay.

The fact that the
"on" magnitude has unity
value is again only in

the interest of con- T

venience. This

restriction for a

system with a scalar -1

control or for a system with
multiple controls is no
restriction at all MODEL OF THE RELAY

providing the "on" FIGURE 2.1

values of each of the

controls has the same magnitude. This can be seen from an examination
of Eq. 2.2. This equation can be normalized by defining new state

variables and a new noise vector such that the "on" magnitude of the

-6 -




coiitrcl cignal has the value of unity.

If the input signal to the relay, z(t) , is a sample from a
random process then there exist relationships defined on the probability
distribution of z(t) such that the stochastic properties of the control
signal may be determined. For example using the fact that u(t) is

constrained to be either 0, +1 , or -1 then

3
Elu(t)] = " (t)plu,(+)]
(2.4a)
= p (t) - p,(t)
)
E[u(t)] = u?(t)plu, ()]
J dJ
=L (2.4b)
= p,(t) +py(t)
3:
Bl lu(t) ] = Z [, (£ IpLu, ()]
=1 (2.4¢)

I

p, (t) + p,(t)

where E 1is the expectation operator and

uj(t) = the j-th value of the control signal at time "t", where
ul(t) = +1, uz(t) = -1, u3(t) = 0.

pl(t) = the probability that at time "t" the control signal has the
value +1.

p2(t) = the probability that at time "t" the control signal has the

value -1.

Since the input signal to the relay is z(t) , these expectations can
be written in terms of the probability distribution of z(t) by using
the mathematical description of the relay given in Egs. 2.3. '

-7 =



Elu(t)] = p,(¢) - pg(t)
= plz(t) =2 +%] - plz(t) = k] (2.5a)
E[u®(t)] = p (£) + p,(t)

plz(t) = +k] + plz(t) = -k] (2.5b)

B[ lu(t)]]

p (1) + p (t)

[z(t) = +k] + plz(t) = -kl (2.5¢)

Other relationships can be obtained in a similar manner.

In the ensuing discussion it will be found necessary to determine

such stochastic properties of the control signal as

1. E[u(t)]

2. E[u(tl) u(tg)]
3. E[u(tl) W(tg)]

where E[u(tl) u(tg)] is the auto-correlation function of the control
signal and E[u(tl) w(tg)] is the cross-correlation between the control

signal at time t, , and the noise at time ¢t

1 2 -

2.4 THE PERFORMANCE INDEX

As stated in Section 2.1, the performance index is such that some
combination of total control effort and final state will be considered.
Because both the control effort and the final state are random variables,
this performance index must be based on an average cost; therefore,
performance is defined as

T m

s =) [ I e)lasls wlx (1) ax(m)] (2.6)

to i=1
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where the prime denctes trans

oge. The matrix Q 1is a constant n x n

P
matrix, and ul(t) is the i-th element of the control vector.

2.5 ASSUMPTIONS

The development presented in this study will assume that both
the additive noise and the control signal are scalar quantities, so that

Eq. 2.2 may be written
x(t) = Fx(t) + Du(t) + Bu(t) (2.7)

where D and B are vectors and w(t) is a random process.

The system (Eg. 2.7) has the well known solution, (Ref. 5)
t
x(t) = eF(t'tO)E(to) ; f FC=T) [ p (2 )4pu(x ) Jar (2.8)

t
o}

where eF(t_to)

An element ¢ij(t—to)

is the transition matrix of the linear dynamical system.

of this matrix is the time response of the i-th

state due to an initial condition on the j-th state.

The integral on the right hand side of Eq. 2.8 is a function of
the stochastic processes u(t) and w(t) ; therefore, it is necessary
to ask if the integral exists and in what sense. For the purposes of
this paper, it is sufficient to require that the integral exists in the

sense that it can be represented by an approximating sum.

Since wu(t) 1is constrained to be either +1 , -1, or O, it
is apparent that the part of the integral which involves the u(t)
process exists as the limit of an approximating sum, for if the integral
is represented by an approximating sum and the subdivisions occur at
the switching times, then the value of the approximating sum is exactly

that value of the integral.

In order to show that the part of the integral involving the process
w(t) also exists as the limit of approximating sums, it is sufficient

to show that the process satisfies the hypotheses of a theorem from



Parzen (Ref. 6) which requires that the stochastic process have the

properties:

1) continuous parameter

2) meean value function m(t) = E[w(t)] is continuous in t .

3) covariance kernel K(s,t) = Cov [w(s), w(t)] is continuous

in both s and t .

T herefore, in this study it will be assumed that w(t) has the above

properties. Then from Parzen's theorem

b b
E [fw(t)dt] = /m(t)dt (2.9a)
: b ) b b
Var [fw(t)dt] = ffK(s,t)dsdt (2.9p)
a a &

K(s,t) = Elw(s)w(t)] - m(s)m(t) (2.9¢)

In this study it will be assumed that m(t) is identically zero,
so that Eq. 2.9 reduces to
b

E[ [»:(t)at] -0 (2.108)

(¥

b b b
Var[fw(t)dt:] = h/l/‘K(s,t)dsdt (2.10b)

K(s,t) = Blw(s)w(t)] (2.10¢)

The investigation in this study will be concerned with the
solution to the optimizeaetion problem when various assumptions are made

about the system and the performance index.
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IIT. MINTMIM FUEL EXPENDITURE
3.1 DEVELOPMENT

In this chapter it is assumed that the matrix Q in Eq. 2.6 is
the null matrix. The performance criterion reduces to the minimization

of the function:

T
J=E lu(t)|at (3.1)
J

such that E[x(T)] = 0 . From Eq. 2.8 it follows that

T
E{eﬂT—to’z(tow / eF‘T"“’[nu(t)+Bw<tnat} - 0 (3.2)

t
o

Since the state vector é(to) is assumed to be known, then

E[eF(T-to)_)_g_(to)] = eF(T'to)E(to) (3.3)

Upon using the summation property of the expectation operator and also

using Eq. 2.10a and Eq. 3.3, Eq. 3.2 can be written

T

erE<T_t)DE[u(t)]dt = -eF(T_to)gﬂto) (3.4)
t

o

or

T

Jre—FtDE[u(t)]dt = -e-Ftoi(to) (3.5)
t

o

From Eq. 2.4a, Eq. 3.5 can be written
T

f e " *Dlp, (£)-p,(t)1at = e ox(s ) (3.6)

t
o]

and by using Eq. 2.4c, Eq. 3.1 becomes

- 11 -



T
J =f [p,(t) + p ()] dt (3.7)
t

In this formulation, pl(t) and pg(t) can be considered the control
varisbles. Since pl(t) and p2(t) are probability functions, these

functions must satisfy the following constraints

p,(t) =0 (3-8a)
p. (t) +p,(t) =1 (3:8¢)
1 2 (t)
Po
The region of allowable values 1
of these variables, which is
now also the region of admissi-
ble controls, is shown in Fig. 3.1.
The problem can now be Pl(t)

1
restated in terms of Eq. 3.6

and Eq. 3.7 by defining a FIG. 3.1. REGION OF

matrix C , such that ISSIBLE CONTROLS.

cp(t) = Dlp,(t) - py(t)] (3.9)
and by defining the new system as
X(t) = FX(t) + cp(t) (3.10)

where g(t) is the state of this equivalent system. By using the
constraints in Eq. 3.8, Eq. 3.7 can be expressed in the following

form

Jd =

2
Z lpd(¢)lat (3.11)

T
o 9=t

t

With Eg. 3.10 as system equation, Eg. 3.11 as the performance index,
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and 3.8 2s the constraints on the controls, the problem is now in a

form where the Maximum Principle can be used to an advantage.
3.2 EXAMPLE
As an application of this method the second order plant
¥(t) = u(t) + w(t) (3.12)

is considered. One defines as usual

il

(€)= x,(¢t)

kg(t) u(t) + w(t)

then the following system evolves

x(t) = Fx(t) + Du(t) + Bw(t) (3.13)
where
0 1 1t 0 0
F = > eFt = » D = 5 B = y
0 0 0 1 1 1

therefore Eq. 3.10 can be written

% (t) 0 1 X 0 0
&1 i 1 (t) . p,(t) (5.14)
%, (t) R | SR 11 4 p,(¢)

and from 3.11 it follows that

T
3= [ Uz (®)] + Ipy(e)lay (3.15)
t

or
- 13 -



T
N A ORS XONE (3.16)

T
e}

For this system the Maximum Principle (Ref. l), yields the Hamiltonian

H=- [pl + p2] + leg + 2, [pl - p2]

A%, = b (I-A,) - py(1 + ) (3.17)

where it is understood that Al 5 N5, D

5 and p2 may all be

l J
time dependent.

The adjoint variables are determined by the following equation

Xl = - égf-= 0 (3.18a)
Bxl
[ S (3.18b)
ox
2
which yield
Ay = A (8 )+ (e ) (3.19)

The Hemiltonian H is maximized by the following choice of pl(t) and
p,(t):

pl(t) =0 if A, <1

(3.20)




LF ! -
to V ‘te tO+T t

p, (t)
1 1
It % t_+T v
o] 2 o]
42(t)
1
.
t
\ to tl
FIGURE 3.2b
‘u(t)
l L
| tO tl
>,
N t2 to+T
FIGURE 3.2¢
12(8)
k+1 T
t0 tl >
t t +T t
2 o
-k-1
FIGURE 3.24

FIGURE 3.2 TIME HISTORIES OF THE VARIOUS VARIABLES DERIVED
IN THIS SECTION
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These values of pl(t) and pg(t) are within the allowable region
as set forth in the constraint Eg. 3.8 .

Figure 3.2b shows the "controls" pl(t) and pg(t) for the adjoint,
Ae(t) , shown in Fig. 3.2a.

Therefore; with probability one, the control signal to the actual
dynamical system will be as shown in Fig. 3.2c. It is necessary to use
the qualifying phrase "with probability one" since the only requirement
on the control signal is that its probability distribution be as shown

in Fig. 3.2b.

It is to be noted that this is the same control signal which would
result if the disturbance w(t) was ignored at the outset. This result
is essentially a consequence of the requirement that the control only
zeros the expected value of the final error state. There is no guarantee
that this control signal will zero this final state; rather, there is
only a guarantee that this control signal will zero the average value

of the final state.

Incidentally, Fig. 3.2d shows a signal which can be used as an
input signal to the relay if the control signal is to be the one shown
in Fig. 3.2c. The value of k in Fig. 3.2d corresponds to the value
of k in Fig. 2.1. There are an infinite number of input signals that
would also give this same control signal. In this case the determination
of an input to the relay, z(t) , given the required stochastic properties

of the output is a trivial problem.

Figure 3.3 shows the physical realization of this control scheme
assuming that the input to the relay, z(t) , is known. There is again
the well known problem of determining the initial conditions of the
adjoint variable. The system is open loop in that =z(t) is a programmed

input -

w(t)

x(t)

z(t) o1 -k u(t)

L
k + 2
5

i

FIG. 3.3 REALIZATION OF THE SCHEME OF SECTION 3.2
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3.3 EVALUATLION OF CONTRCL SCHEME OR SECTTON 3.2

In order to check the "goodness" of this control it is necessary

to determine the variance of this final state.

In this case, E[u(t)] = u(t) . When the constraint as given by
Eq. 3.4 is satisfied, Eq. 2.8 can be written, (for t = T)
T
(1) = feF(T_T)Bw(T)dT (3.21)
0

Therefore,

T T
E[x(T)x'(T)] =ffeF(T-T)BB'eF’(T-§) w(T)w(t)drae (3.22)
00

where the bar over the variable denotes the expectation operator and
the prime denotes the transpose of the matrix. From Eq. 3.13, the above

expression may be written out in its entirety.
[~ —

x, (T)x,(T)
xl(T) xl T x2 T

rr [(ror)(re)  (ree)
=ff w(T)w(E)aTat
00

(7-1) 1
- - | Jd (3.23)

Therefore the variance of the final state is given by,

TT

Xi(T) =ff(T—T) (r-¢) w(t)w(e)arae (3.2Lkq)
00

T T
xg(T) =f w(T)w(t)dtde (3.241p)
00

For example, assuming E[w(t)w(t)] = G8(7-£) , so that w(t) is

white noise of power intensity G , then

- 17 -



T
xi(T) = fo('r-r) (T-£)8(7-¢)arde
00
3
- G_g_ (3.25a)
T T
2
x2(T) =G 8(1-t)dtde
Ji
= GT (3.25b)

The variance increases with the noise power and with the time T
of the problem. Since the variance increases with T , an obvious method
of reducing this variance is by reducing this time T . If T 1is a
free parameter, it should be chosen as the minimum time required to
zero the state. With this choice for T +then a scheme similar to
that presented by Hopkins and Wang (Ref. 3) can be used since that scheme

zeros an error state in minimum time.

There are however, problems in which T is fixed; for example, a
rendezvous problem in which the rendezvous time is given. 1In this case
T 1is not a free parameter, so that if it is required that the variance
be smaller, there must be a corresponding increase of fuel expenditure.

It is to this class of problems that this investigation is next directed.

In the next chapter it is assumed that the cost of the fuel is
negligible compared to the cost resulting from errors at the final time
and that this final time is fixed and is greater than the minimum time

mentioned in the preceding discussion.
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IV. MINIMUM FINAL STATE VARTANCE

4,1 THE PERFORMANCE CRITERION

In this chapter, the problem in which the cost of control effort
adds only a negligible amount to the performance index is considered.
In this case, it can be assumed that the matrix Q (Eq. 2.6) is
purposely chosen so that the integral in Eq. 2.6 has little effect
upon the total cost. For this particular assumption Eq. 2.6 reduces
to

J = E[x'(T)ax(T)] (k.1)

Again with the assumption that the additive noise has zero mean
and that the state E(to) can be accurately determined, the constraint
equation (Eq. 3.5) holds and is rewritten here for convenience.

T
fe'FtDE[u(t)]dt = —e-Ftolc_(to) (3.5)
t
(o]

By the use of Eq. 2.8, Eq. 4.1 may be expanded such that this
cost is expressed in terms of the control effort and the additive noise,

each of which is again assumed to be a scalar quantity.

T
T {[z'(to)eF'(T-t") *f [u(e)pt + w(e)p'le" (TEag).q.
t

(o]

T
[eF(T-to)g(to) +\/F eF(T_T)[Du(T) + BW(T)]dTi} (k.2)

t
o]

At this point, the matrix Q is assumed to be a constant times

the identity matrix; so that this matrix need not be considered further.

After expanding the right hand side of Eq. 4.2, it follows that
¥ - -
J=E (?s’(to)eF (T to)eF(T to)g(to)

(continued)
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<+

T
5'(to)eF'(T_to)k_/r eF(TmT)Du(T)dT
t

.l
| %
-~
(_f.
e}
o
[
eS|
—~
I
c'-.
(@]
g
c.f.
\}a
(0]
=
—~
=
i
Py
p
4
a
jol)
=)

+ \/P u(g)D'eF'(T'g)dg eF(T'to)z(to)

+ k/ﬁ w(g)B'eF'(T-g)dg eF(T—to)i(to)
i

T T
+ D'eF'(T'g)eF(T'T)D u(t) u(r) dedr
JJ

o O

T T
+€/ﬂ€/q D'eF'(T'g)eF(T"T)B u(e) w(t) dedr

(@] O
T T
+L/1/p pref (T-8) F(T-7), w(e) u(t) atar
£t
T T
+k/p\/P pref (T-8) F(T-T) 4 w(e) w(t) dng:} (4.3)
t ot
o] (e}

Upon using the summation properties of the expectation operator

and the assumption that E[w(t)] = 0 , Eq. 4.3 is reduced to

F'(T-to) eF(T-tO) x(t)

— 1
= x'(t,) e ]

T
+ x'(to) eFl(T'to) \/F eF(T—T) D u(T) drt
t

o

(Continued)
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-~ X !

Ll:/‘ Q) D|eF'(T-§)dg eF(T'to)_;s(to)
£
(o]

T T
+ Jf JF B’eF'(T-g)eF(T_T)B w(E) w(t) dedr
t t

c O

TT
+k/i/p D‘eF'(T-g)eF(T_T)B u(e) w(t) dedr
t t
0o

T T
+ff pref (T (T-1) ) 3y aear
£t
(] (o]
T T
+b/ b/‘ Dre (Tag)eF(T“T)D u(t) u(t) dedr (4.4)
€t
(@] (o]

where the bar denotes the expectation operator.

This equation can be further simplified by noting that certain
terms are independent of the control and therefore, need not be con-

sidered in the minimization of J .

For example, the double integral which involves only the auto-
correlation of w(t) is independent of the control and hence need not
be considered in the minimization of J . Because of Eq. 3.5, the
integral in the second term on the right hand side of Eq. 4 4 is simply
—eF(T’to)z(to) which is therefore only a function of the initial con-

ditions; in fact when one uses Eq. 3.5 it can be shown that

T
5'(to)eF'(T-to)\jheF(TmT) Du(t) art
t
o

(continued)
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T
+ fﬁ"(ﬂ D'eF'(T“g)dg eF(T'to) x(to)
t ,

F'(T-t.) F(T-t,) x(t) (%.5)

[ f )
= - 2X (to) e

The control dependent terms may be collected for convenience by

defining

=T x(t) JH(T-t ) F(T-t ) x(t )

/f pref (T-8) F(T-7) 5 oy —r2y aqear (4.6a)

With this definition for J¥ , the control which minimizes J¥*
also minimizes J ; therefore, J* will be written so that its

dependence on the control can be seen,

J*_ff D'e F'(T-¢) F(T T) a(E )w(T) atar

T T
+ffB'eF'(T'5) eF(T-T)D u(t) w(e) dedr
t

(o]

T T
+u/\Jf D‘eF'(T—E)eF(T_T)D u(T) u(e) dedr (4.6b)
t t

Since each of the integrals of Eq. 4.6b is a scalar quantity and
since the two integrals involving the noise process, w(-) , are the

transpose of each other, Eq. 4.6b can be rewritten

TT
J* =k/1/h D,eF’(T-T)eF(T-é)D w(T) u(e) dedr (continued)
t t
o o

- 22 .




+ 2ff D'eF'(T-T)eF(T_E) B u(7) w(g) dedr (4.7)

It will now be assumed that the noise is white. Insofar as the
statistics of the noise are concerned, this assumption presents no
real restriction if the noise is gaussian since a linear filter can be
added to the dynamical system such that the output of this filter is
colored and gaussian when the input is white and gaussian. However
for those systems where the noise is not gaussian, the assumption that
the noise is white may impose a restriction on the class of problems
for which the following development is applicable. The assumption that
the noise is white must therefore be considered when the system equations

are derived.

With this assumption, it follows that the control signal is
independent of the future values of the noise since the future values
are not predictable; therefore, since the noise has zero mean; the
average, GT?S'GZET is zero for & > 1 . With this assumption con-
cerning the spectral density of the noise and the fact that the first
term on the right hand side of Eq. 4.7 is symmetrical in T and § ,
this equation can be rewritten

T

J% = 2 ff D'eF'(T'T)eF(T"g)D u(e) u(T) atdr
t t
(o] O

TT

+ 2ff D'eF'(T'T)eF(T'g)B w(t) u(T) dgar (4.8)
t t
(] (o]

or T T

oF fu(f)dff[D'eF'(T‘T)eF(T"g)D u(e)

t t
o

J¥*

o

eF' (T-T)eF(T-g)

+ D! Bw(e)] at (4.9)
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Equation 4.9 can be more simply expressed by defining a random

variable, y(T) , such that

-
y(7) 2}/h[D'eFi(T"T)eF(T“§)D u(e) + D’eF'(T°T)eF'<T"§)Bw(g)]dg (4.10)
to
With this definition for y(T) ; Eqg. 4.9 can be rewritten

T
J* = 2\/F u(t) y(1) ar (k.11)
t
o

Minimization of J¥ as given by Eq. 4.11, subject to the constraints
as given by Eq. 3.5 is the primary objective of this research. This
minimization must consider the fact that u(t) is constrained to be

the output of a relay.

The performance index, J¥ , as given by Eq. 4.11 can be minimized
if the function, u(7) y(7) , is minimized at each instant of time.
Minimization of u(Ti yiTs is discussed in the following section.

.2 MINIMIZATION OF u(%) y(t)

Minimization of the average, a(T) yiTi s can be first investigated

by expressing this average in the form

w(7) y(7) = plu(r) , y(v)Iolu(r)loly(t)] + u(7) y(7) (k.12)

where
plu(t),y(7)] 4is the normalized correlation coefficient
oly(tr)] is the standard deviation of y(71)

olu(t)] is the standard deviation of u(T)

Since the average value of the noise is zero, the function, yfr5 5

in Eq. 4.12 is given by the expression

o) =f D,ep'(T-r)eF(T-e)D alE) ae (k.13)
t
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Theretore when Eq. %.12 and Bg. '.1% are suhstituted into Eq. 4.11,
the performance index becomes
T
J*=2\jf olu(v),y(v)] olu(v)] oly(s)] ar

t
0

T T
+ eff D‘eF'(T'T)eF(T'g)D u(T) u(e) aedr (k.1k4a)
t t

o O
or T
J*:g[ddﬂ,ﬂﬂ]duﬂ]dﬂﬂ]m
tO
T T
+ f ul(t) D'eF‘(T-T)dT feF(T—g)D u(E)at (4.14b)
t
(@] (o]

When Eq. 3.4 and Eq. 4.14b are combined, the resulting equation for J¥

is given by

T
J*=g[pmu),ﬂw]ﬂuw]dﬂﬂ]m
t
+ Ez(to) eF'(T—to)eF(T—to)ﬁ'(to) (4.15)

The last term of Eq. 4.15 is independent of the control; therefore
in order to minimize Eg. 4.15 it is only necessary to minimize the
value of the integral. This integral will assume its most negative
value if the correlation coefficient, plu(t),y(t)] , assumes its most
negative value at each instant of time independent of the standard
deviations ofu(t)] and o[y(tr)] . However, it is well known, (Ref.
7, p- 263, for example) that the only cases for which perfect correlation
such as this exists are for those cases where the two random variables
are linearly related. Since u(t) has at most three values and y(T)
can have possible an infinite number, it is obvious that the two random

variables can not be linearly related and thus uiTiyZT$ can not attain
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this lower bound. The problem is now to find the attainable minimum
and having found it,; to determine the conditions on the control so that

this minimum may be realized.

Justification for the manipulations used in the following presentation

can be found in any good bock on probability theory (Ref. 7, for example).

The average, ul(T) yiri , 1s given by

1
NGORG] =_/fy<w> E[u(t) |y(1)] aFly(c)] (4.16)
0

where E[u(t)ly(7)] 1is the expectation of u(t) conditioned on y(7)
and F[y(t)] is the cumulative distribution fuction of y(t) . When
it is assumed that the probability density function of y(t) contains

no delta functions, then the differential, dF[y(t)] , is given by
aF[y(1)] = ply(7)] ay(r) (4.17)

Also, the average, a(T) s 1s given by

1
o) - \/P Elu()|y(1)] arly(1)] (1.18)
0

Eq. 3.5 imposes an integral constraint on the values of 3(77 H
therefore, the expression for ET?T as given by Eq. 4.18 imposes a
constraint on the minimum value of ET?T_ET?T » since the function
E{u(t)|y(t)]1aF[y(t)] which determines the minimum of u(%)y(t) also

determines the value of u{(t) . This can be easily seen in the event
it is required that u(T) be +1 . For in this case it is necessary

that the function E[u(t)|y(t)] be +1 .

Therefore the problem of minimizing the function wu(t) y(t) will

be rephrased as follows:

"For a fixed but as yet unknown value of u(t) find the function,
E[u(t)ly(1)] , such that the average, u(T) y(t) , is minimized."

For convenience it is assumed that the density function of y(7)

contains no delta functions. In forming y(T) , the two signals,
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u(t) and w(t) , are smoothed by the integration process; therefore,
besides being convenient, this assumption is also reasonable. When

this assumption is used, Eq. 4.16 and Eq. 4.18 can be written

NOR ) f y(t) Elu(®)ly(x)] ply(t)lay(t) (4.19)

and o
W) = [ B ly(0)] ply(x)] ay(x) (4.20)

Minimization of Eq. 4.19 subject to the constraint given by Eq.
4.20 can be considered as an optimization problem in which the Maximum
Principle can be effectively used. In this formulation, the dynamical

system is defined by the differential equation

290 Bu(x)ly(e)] ply(r)] (h.21)

and Eq. 4.19 is the appropriate performance criterion. The "control",
which for this system is E[u(T)]|y(1)] is bounded by +1 . The

Hamiltonian for this system becomes

Hly(t)] = -y(v) Efu(t)]|y(7)] ply()]

+ N [y(1)] Efu(t) ly(7)] ply(7)] (4.22)

where
A1) = - Sl - o

which implies that at each fixed time, Xl[y(T)] is a constant.

Since ply(7)] is a positive quantity and since E[u(t)|y(1)]

is bounded by +1 , the Hamiltonian is maximized by making

Elu(7)|y(x)] = san { A [y(7)] - y(x) } (k.23)
where SGN {x} = +1 for x>0
= =1 x <O
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Therefore, E[u(t)|y(t)] is always either +1 or -1 . The value of
y(T) where this function changes sign is that value where y(7) is
equal to Kl[y(T)] . By letting this value of y{(Tt) be denoted by
$(t) , Eq. 4.20 can be written

9(7) =
T - f ply (%) Jay(<)- f ply(t)] ay(r) (4.24)
00 (1)

Equation 4.24 is the rule which is used to find the value of ¥(7T)
in terms of the fixed but as yet unknown value of u(7) + This procedure

requires that the probability density function of y(7) is known.

In a physical relay it must be admitted that there is a slight
delay in the action of the relay. Equation 4.23 specifies that the
control signal, u(Tt) , be correlated with the random variable y(t)
Because of the slight delay in the dction of the relay, the control
signal, u(T) 5 will actually be correlated with the random variable,
y(t1-€) where € can be considered to be an infinitesimal quantity.
Since y(T) 1is a smooth function, the assumption is made that the
density function of y(T) and the density function of y(T—e) are

very nearly identical so that Eq. 4.24 may be written

g(t) o
m :f p[y(%—e)]d{y(f%)}- f p[y(T-e)] d{y(T-€)> (l{»,zha)

Since y(t-e¢) 1is composed of the past values of the noise and the
control signal, it i1s therefore possible to determine the distribution
of this function. The distribution of the function y(T) can be
assumed to be identical to this distribution of y(T-e) .  Therefore,

for a given value of u(T) , Eq. 4.24 may be used to compute §(t)

Once the optimizing value of u(t) is known and $(7) is computed,
there is a straightforward rule for specifying the control law such that

the "best" correlation is obtained. This rule requires that

Elu(t)|y(t)] =1 if y(7)

T) (4.25a)
=-1 if y(7) )

(4.25b)




But Elu(7)ly(t)] = 1 implies that

plu(t) =1 | y(r)] =1
plu(t) =0 | y(1)1 =0 (.26
plu(t) ==1 | y(x)] =0

and E[u(t)]y(t)] = -1 implies that

plu(t) =1 | y(1)1 =0
plu(t) =0 | y(1)] =0 (4.27)
plu(t) =-1 | y(x)1 =1

and thus given y(t) and 9(1) , u(r) is known to be almost always
either +1 or -1 ; the dead zone in the relay is thus unnecessary

since plu(t) = 0 | y(7)] = 0 always.

Now that u(T) yiri has been minimized with respect to the
correlation between u(t) and y(t) , it is only necessary to optimize

the unknown value uZTS .

When the optimizing value for E[u(t)|y(t)] is substituted into
Eg. k.19, this equation becomes

9(x) o
T3 g, = [ v ey(la () - [ y(@) sly(lay(s) (.28
= $(x)

Since it was previously assumed that the probability density of
y(T) is known and is not dependent on the control at time T , the
value of the control, ET?T , appears only in the limits of the
integrals of Eq. 4.28 since u(T) is a function of %(t) . Therefore,

minimization of J¥ can be further affected by the proper determination

of either the function $(:) or the function u{.) .

This optimal value of the function, u(-) , must also satisfy the
constraints given by Eq. 3.5; therefore, at this point the Maximum

Principle can be used to find this optimal function.

A new state variable is defined by the equation
£ ~
x(t) = FX(t) + D u(t) ; (4.29)
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where the F and the D are identical to the F and the D of the
original system equations. It is obvious that this new state variable,
g(t) , is actually the average value of the state of the original

system.

With Eq. 4.29 as the system equation, the constraint on the original
system given by Eq. 3.5 reduces to the requirement that the state E(T)

is zero.

The performance criterion for this equivalent system is of the form

T
J¥ = 2 flu(T)] ar (4.30a)
J
where ?(T) o0
£lu(r) ] f y(%) ply(r)la y(x) f (6) ply() 1 () (b.500)
-0 §(~

The function f[uiri] is a function of uiTi since the limits of the
integrals are functions of uiTi .

In this reformulation of the problem, the Maximum Principle is used
to find the optimal value of u(7) which minimizes Eq. 4.30a subject

to the constraint that the final state, ;(T) s is zero.

4.3 SUMMARY

In this chapter a procedure is presentedwhich derives a rule for
determining the magnitude of the control signal such that the variance
of the final state is minimized. This procedure requires that a
function of the past values of the control signal and the noise be
formed and that this function be compared to a predetermined function,
?(T) ; and on the basis of this comparison, the control signal is
generated. This value of 9(T) is the wvalue of y(T) where the
function, E[u(t)|y(t)] , changes sign from +L to -1 .

The mathematical procedure for determining this value of (T)

is summarized as follows:

l) By defining an equivalent system (Eq. h.29), the optimal wvalue
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%

NE ned by the application of the Maximum
Principle.

2) The value of 9(1) is computed from this value of u(Ti by
the use of Eq. 4.2k,

Application of these procedures is presented in Chapter V.
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V. APPLICATIONS TO PHYSICAL SYSTEMS
5.1 INTRODUCTION

In this chapter it is shown that when the input noise is gaussian,
the minimization procedure described in Chapter IV can give a very
good quasi-optimal solution to the relay control problem. The emphasis
is on the 1/52 plant; however, toward the end of this chapter the
l/(52+l) plant is briefly considered.

5.2 A QUASI-OPTIMAL SOLUTION FOR THE 1/82 PLANT

The procedure described in Chapter IV will now be used in order
to determine a quasi-optimal control law for the system described by
the differential equation

o

a"x(t) :

—Tﬁﬁj”.t (o) + w(t) (5.1)
where the noise, w(t) ; 1s assumed to be a sample from a stationary,;

zero mean, gaussian random process with auto-correlation function

given by Gd(t) where ®(t) is the Dirac delta function.

In this case the state equationsare given by Eq. 3.13. From
Eq. 3.13 it is seen that the vectors B and D are identical; there-
fore the random variable y(v) as defined by Eq. 4.10 is given by
3

y(x) = /‘DfeF"(T-T)eFm-g)
0

Dlu(t) + w(e)] at (5.2)

where for convenience, it is assumed that the lower limit, to , 1s

zero.

By defining a new random variable v(t) such that

v(g) = u(e) + w(g) (5.3)
then Eq. 5.2 can be written
y(1) = /AD’eFI(T'T)eF(T”é)D v(e)ag (5.4)

0
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With this substitution,the average, uit5 yiTs » is given by

T
u(t) y(1) =\/P D'eF‘(T_T)eF(T-g)D u(t) v(E) dt (5.5)
o)

The average, u(T) v2§5 » appearing in the integrand of Eq. 5.5
can be expanded as follows

u(r) v(g) = u(t) Lu(e) + w(e)]

Il

u(t) u(e) + u(r) w(e)
u(t) u(e) + u(t) w(e) + plu(r) , u(e)lolu(r)lolu(e)]
(5.6)

]

where plu(t) , u(¢)] = correlation coefficient

olu(-)]

standard deviation of wu(:)

n

When Eq. 5.5 and Eq. 5.6 are substituted into the performance

criterion, J* , as given by Eq. 4.11, this equation becomes

il

J*

TT
2\/i/hD'eF7(T-T)eF(T-E>D u(t) ule) aear
00

+

T
szD'eF'(T'T)eF(T'g) D u(7) w(£) dtdt
00

+

T 7T
F'(T-t) F(T~
2\]C/PD'e (-0 P (Mo u(r) |, u(e) Jolu(v)Iolu(e)] dear
00
(5.7a)

This equation can be further simplified by rewriting the first term on
the right hand side so that
F'T FT

e 'x

x(0)

J¥ = x'(t) e

+

T
2\/T/PD'EF'(T_T)8F<T'§)D u(t) w(e) aear
00

+

T
2k/ﬁ/PD'eF'(T_T)eF(T-g)Dp[u(T) , u(e)lolu(t)lolule) Jarae
00

(5.7p)
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The term in Eq. 5.7b which involves the correlation coefficient,
plu(r) u(t)] , is bounded from above since each of the factors of the
integrand are bounded from above; that is, the factor D’eFI(T'T)eF(T_g)D
is bounded since the dynamical system is assumed to be stable and also
each of the factors involving the control signal is bounded from above

by +1 .

Since the contribution of this term to the performance criterion,
J¥ , 1s bounded and the contribution from the term involving E(??GTET
may be unbounded, there are cases where the effects of the factor,
olu(t) , u(e)lolu(t)lofu(e)] , are insignificant compared to the effects
of thefactor :R:j;ngi. These cases are investigated in this section
and then in a later section the more general case is investigated where
the effects of the factor o{u(t) , u(t)lolu(t)lolu(t)] are included in
the study-.

The Jjustification for neglecting this correlation term can also
be seen if it is noted that the random variable, v(&) , is the sum
of the random variable, u(g) ; whose amplitude is either +1 or -1

and the random variable, w(g) , whose variance is infinite.

Since w(t) 1is a zero mean, gaussian random variable with infinite
variancé, then it can be assumed that the distribution of v(&) is
gaussian with infinite variance since the addition of the finite term,
u(g) , can hardly change the shape of the distribution. The mean value
of v(t) must be given by u(t) since v(t) = w(t) + u(t) and the

mean value of w(t) is zero.

Inscfar as the statistics of v(g), are concerned, one may therefore

consider the statistics of v(&) where
v(e) = Q(E) + w(e) (5.8a)

since V(g) is gaussian with mean given by u(t) and infinite variance.
With this assumption, an approximation to the average, u(t) vigi B

can be found as follows:
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————r—r __ RN
u(t) vig) = u{7) v{t)

n

u(t) [u(e) +w(t)]
u(t) u(g) + u(v) w(e) (5.8b)

I

When one compares Eq. 5.8b to Eq. 5.6, it can be seen that the
gbove assumptions neglects the effects of the term involving the auto-

correlation of the control signal.

This study will now continue using the assumption that, insofar
as the performance is concerned, the effects of the term involving the
autocorrelation of the control signal are negligible compared to the
effects of the term involving 51;7—5157 and thus this former term
can be omitted from the performance criterion. This relative significance
will be investigated toward the end of this Section and also in Section
5.3.

The original performance criterion, J , can be expressed as a
function of the above mentioned variables by substituting Eq. 5.7b into

Eq. 4.4 giving

TT
JC]P B‘eF’(T-T)eF<T-§)B w(t) w(t) dtdt
00

dJ

4

Tt
2 preF ! (T-7) F(T-8 )y a(t) (&) aear
g

-’

T
Fi(T- T-
2_/[])'6 (2-7) F(T g)Dp[u(f) » w(€)lolu(r)lolu(e)ldear
00
(5.9a)
Therefore when the term involving the autocorrelation of the control

signal is neglected and when the autocorrelation, G®(t-£) is sub-
stituted for W(E) W{7) , +the approximation to the performance

~

criterion, J , is given by J where
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and

T
~ ’ oo ~o
T = GfB’eF (T-7) F(T-T)g 4,

0

Tt
+ 2ffD'eF'(T_T)eF(T_€)D u(t) w(e) qedr (5.9p)
00

From the state equations, Eg. 3.13, it follows that

D'eF'(T“T)eF(T'é)D = (T-t) (T-¢) + 1 (5.10a)

pref (T-7) F(T-7)p (7-1)° + 1 (5.10b)

Equation 5.10 is substituted into Eg. 5.9b yielding the equation

z T T
J=0 [g— + T:] + 2f [(T-t) (T-¢) + 1] u(7) w(E) aear (5.11a)
00

Minimization of 3 with respect to the control is equivalent to

the minimization of Jl where

T T
J = Eff[(T-T) (T-¢) + 11 u(7) w(e) atar (5.11b)
00

In order to use the procedure of Chapter IV for minimizing Jl )

it is necessary that the random variable, y(T) , be defined by

where

T

y(t) = | n(7,e) w(e) dt (5.12a)
J

h(t,&) = (T-7) (T-¢) + 1 (5.12b)

so that Jl is given by

T
Jl=2 \/\uf’r;yZ‘rj dt (5.12¢)
0

Since y(1) as defined by Eq. 5.12a is essentially the Output of
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a linear filter when the input is gaussian noise, then y(t) is also

gaussian. The mean and the variance of y(t) are determined from the

equations
T
Ely(7)] =fh(r,§> w(E) ae (5.13a)
0
=0
and T
o Iy(r)] = E[yg(T)] =ffh(r,q>)h(r,g) w(p) w(t) apat
T
2
=G h=(1,e) at
J

]

3
% {31 + STQ(T—T) + T (T-T)2

- 3(T-T)3 - (T-T)S } (5.13b)

Therefore y(t) is gaussian with zero mean and variance given by
Eg. 5.13b. The procedure developed in Chapter IV can now be used to
minimize Jl .
From Eg. 4.24 it follows that

9(7) @
Blu(r)] = [ ply(v)] ay(x) - (f ply(7)] ay(r)
e 9(1)

) ¥(7) )
e A ay(t)
Vex oly(r)] _;[ Xp{ 20 [y('f)]}

dy(t)
V2ﬂ 0’[}’(" y(r { 20’ [}’( )] f

k(T
f exp( } (5.1ka)
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9(t)/oly(7)]

switching point for E[u(t)|y(t)]

where k(T)

§(v)

oly(t)] = standard deviation of y(T)

From Eq. 4.28 it also follows that

9 (r) o
w()y ()i, =f y(t)ply(7)lay(r) -fy(T)p[y(T)]dy(T)
0 ()
1 7 __ﬁ_L_
- (1) e dy(7)
Vorx oly(t)] f TR 267 [y ()] Y
1 _xi____
- (1) e dy (1)
Ver oly(v)] g/ry A e [y(r)] ’
| "c‘ SR
_g_I:Y_T._l xe i 2 xe 2 X
i N o - [ :
00 k(T)
. kegr)
Wy, = -2l 2 (5.140)

min W/E;:

When this minimum value of uZTSyZTi is substituted into Eq.

5.12c¢, the performance criterion, Jl , is given by

2
T _ kK (7)
g, = - Ef\/%— oly(t)le 2 dt (5.15)
0

The minimum value of Jl can now be determined by finding the
optimal value of u(7) (or k(t)) which minimizes J, eand also satisfies
the constraints given by Eq. 3.5. The control, u(T) , is that function

of k(1) as given by Eq. 5.1ka.
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The standard deviation, «alv(7)] . is given by the square root of

the variance given by Egq. 5.13b, or

oly(t)] =\/%_{:31 + 3T2(T-T) + TS(T-T)E
1/2
-smww3-0mﬂ5}/ ~ (5.16)

When an equivalent system is defined as in Eq. 4.29, the Maximum

Principle yields the Hamiltonian, H(T) , given by

_k ()
5 ,
1x) 42 olv(0le b AL + A (D5y(1)  (5.27)

where KE(T) is again linear in T .

In order to maximize H(t) with respect to the control, E[u(t)],
the expression for H(T) as given by Egq. 5.17 can be differentiated
with respect to E[u(1)] and the result set equal to zero. From an
inspection of Eg. 5.17 it can be seen that this differentiated equation
will not contain E[u(t)] explicitly but will contain k(t) explicitly.
Since k(t) and E[u(t)] are related in a one-to-one manner by Eq.
5.14%a, this differentiated equation can be solved for the optimizing
value of k(7) instead of the optimizing value of E[u(t)] . It is
to be noted that even though the domain of the function E[u(t)] is
limited, the domain of the function k(t) includes all of the real
numbers so that one need not be concerned with the possibility that
this maximizing value of k(t) so obtained falls outside of the allowable

domain of k(1) .

When the Hamiltonian, Egq. 5.17, is differentiated with respect to

Elu(t)] , the resulting equation becomes
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_k(7)
A2 sror ke ST L ) (5.09)

After both sides of Eq. 5.1ka are differentiated with respect to

E[u(t)] , one obtains the equation

k (r)
(5.19)

|
=]

s

Substitution of Eq. 5.19 into Eq. 5.18 yields the equation

Ay = - oly(1)] K(x) + A(r) (5.20)
Also,
2
d H(7) - o ak(T)
= - oly(7)] _JTTI (5.21)
aE" [u(r)] AELult
From Eq. 5.19, it is obvious that d%TSTZ is always positive;

therefore, since G[Y(T)] is always positive, Eq. 5.21 is always

negative, which is the requirement for a maximum. When Eq. 5.20 is

equated to zero, the value of k(T) which maximizes H(t) is found.

A (T)
K(r) = —2 (5.22)
O‘[yi’ri
This value of k(T) when substituted into Eq. 5.15, results in
the minimum of this function, J, . Since k(t) = 9(1)/foly(T)] , it
follows that $(1) = Ke(r) ; therefore, when this system is realized,
y(T) can be compared directly to ka(r)

From Eq. 5.16, o[y(7)] can be found

sly(7)] = 6+/2g(x) (5.23)

where

1/2
g(t) = {r + T°(T-1) = (Tet)® + 3 [7(-1)? - (T-T)5]}

With this expression for o[y(7)] , Eq. 5.15 becomes

_ho -




L2
e k(1)

J, = Jv/éé-d/hg(T) e 2 at (5.24)

Since k(t) is only a function of E[u(t)] , which is a function of
the initial state; for a given initial state, Eq. 5.24 becomes more

negative as G becomes larger.

The neglected term in Eq. 5.6 1is bounded by unity; therefore, the
maximum amount added to the cost; J , by this term is bounded and
independent of G . Therefore, for G large enough, the effect of
the maximum possible cost increase due to this neglected term is not

significant compared to the cost savings due to J, as given by Egq.

1
5.2k, It is to be noted that Eg. 5.2k always results in a cost savings
since the integrand of this equation is always positive and the minus

sign is before the integral.

For this class of problems, this scheme is a good approximation to
the optimal control. In a later section, the noise is not assumed to

be large and for this case another scheme results.

There is, however, the same difficulty when trying to mechanize this
control as there is in the deterministic case; namely, the solution
depends on the initial conditions of the adjoint variables and not directly
on the initial conditions of the state variables. However, assuming
that the proper adjoint is found for a given initial state, then u(T)
is generated as a function of the output of the time varying filter
given by Eq. 5.12a. If this output is greater than $(t) , which from
Eq. 5.22 and Eq. 5.14a is seen to be KE(T) , u(t) is made -1 and if
this output is less than ke(r) , u(t) is made +1 .

The bound of unity on the term plu(t) , u(¢)lolu(t)lofu(t)] is
in most cases, conservative. The error resulting from neglecting this

term can be accurately computed. The computational scheme is presented

in Section 5.3.

Figure 5.1 shows a method which may be used to realize this control.

This realization assumes that the noise is available for measurement.
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w(t)
\d

t
- fh(t,g)w(g)dg
0
4 u(t) N E(t)
> 1
> __T. ¥ ;5 ::::::{>
FIGURE 5.1

REALTIZATION OF THE CONTROL USING A FIRST
APPROXIMATION TO THE OPTIMAIL CONTROL

5.3 A METHOD FOR COMPUTING THE FINAL STATE VARIANCES WHEN USING
THE CONTROL SCHEME OF SECTION 5.2

This section offers a computational scheme for computing the error
in the cost resulting from neglecting the term plu(T),u(¢)lolu(t)lofu(t)]
in Eq. 5.9a.

Since

plu(a),u(e)lolu(t)lolu(e)] = ul*)ule) - u(t)iu(e) (5.25)

the cost for the system of Section 5.2 resulting from this term is

T T

5 fj [(T-7) (T-¢) + 1] [u(7)u(e) - ul7)u(e)] avae (5.26)
0 0

oy
i

or

-
H

T
- ff[(T—T)(T-E,) + 1] ul(t)u(e) dvde - 5,'(o)eF'TeF-T3c_(o) (5.27)
00
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For this second order plant

1
F'TFT (o) -

- x"(o)e = - [T x2(o) + xl(o)]2 - xg(o) (5.28)

Therefore, in order to evaluate J2 » only the double integral is unknown

and will now be computed.

The autocorrelation function of u(-) may be expanded as follows.
Elu(t)u(g)] = plu(r) = 1, u(g) = 1] + plu(t) = -1, u(t) = -1]

- plu(r) = 1, u(g) =-11 - plu(t) = -1, u(E) = 1]

or

Efu(7)u(t)] = ply(7) < 9(7),y(e) < §(¢&)]
+ ply(t) > 9(1), y(&) > ()]
- ply(7) < §(7), y(&) > 9(¢)]
- ply(7) > 9(7), y(&) < 9(¢)] (5.29)

When one uses the relationship that

ply(t), ¥(&)1 = ply(v)ly(e) Iply(t)]

then, Eq. 5.29 can be written

9(e) (1)
E[u(t)u(t)] = f f ply(T) ly(€) Iply(e) lay(t)ay(e)

+ f ply(7)1y(e) Iply(t) lay(t)ay(e)
y(e) $(x)

y
-f  ply(7)|y(&) Iply(e) lay(7)ay(e)

8

T

()
j ply(7) |y(&) Iply (&) lay(t)ay(e)
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or 9(g)
Blu(thu(t)] = f (7,6 )ply(s) Jay(e)

/ T(7,& )ply(£) lay(t) (5.30)
§(¢)
where
y(t)
I(ng):/ ply(v) ly() lay()
- [ el 1y(s) lay(x) (5.51)
¥(r)

The function TI(71,t8) given by Eq. 5.31 will now be studied. Since

y(1) and y(&) are normal random variables with zero means and variances
2. 2

given by ¢ [y(v)] and o [y(&)] respectively, then the distribution

of y(tv) given y(t) is normal with mean given by "m" and variance

2
given by cl where

- {TrE) (5.32)
s [y(g)]

2
_ () y(&)
=0 [y(r)l{l _{Y (T)Yc[y(gﬂ} } (5.33)

These facts concerning the parameters of the gaussian conditional
probability distribution can be found on page 54 of Ref. 6.

Equation 5.31 can now be evaluated.

y(t)

4 2 ~
el SEEIGIE. Yy P
Veno, L 20
> 2
— f Oxp«r- '(li‘zé):ln)_\dY(T) (5.34)
Voo, ol L 200

Ly -




With a change of variable, Eq. 5.34 simpiifies t

Q

2‘\
I(7;¢) = ,__ exp{: dx (5.34ka)
where
. _ 9
o)

When Eq. 5.34a is substituted into Eq. 5.30, the expectation, Elu(t)u(e)],
becomes
9(¢)
E[u(t)u(e)] = 2 p[y(g)]dy(g)f

/ = ()

©

- 2f ply(t) dy(é) —— exp( }dx (5.35)
9(¢) 'V an
where
ply(e)] = ——== f —lii—} (5.36)
Vor oly(g)] ’\ 20 [y(¢)]

With the introduction of the new variable, z(g) , where

(¢)
2(¢) = ST eN]

Eq. 5.35 reduces to
(é)

P T 2
Elu(t)u(e)] = = exp{ %ﬁ}dzu) fexp {— -)gc—}dx
0
exp{ J—}dz(g)fexp{ }dx (5.37)

where with the substitution of z(¢) , f becomes

l
L

k(t)

(t)y(e)
. §(r) —%['ﬂ%)']" z(t)

cry<r)]{z Ty () i}l/g
& ly(x) 1 [y ()]

- k5 o

(5.38)




It remains to evaluate yiT5yZ§5 which for T = & will give
2
Gg[y(r)] or equivalently o [y(¢)] . From Eq.5.12a and from the fact
that w(.) is white with autocorrelation, G8(t) , it follows that

TE
y(7)y(E) =ffh(ncpl)h(e,cpg)wlcp15w(q>2) d, dp,, (5.392)
00
or TE
= foh(r,cpl)h(e,cpg)s(cplwg) dp,d9, (5.390)
00

When the properties of the delta function, 6(¢l-¢2) , are con-
sidered, Eq. 5.39b can be written
min(T,t)

7y (E) = Gf n(t,p)h(t,)dp (5.40)
0

When the expression, (T-1)(T-¢) + 1, is substituted for h(T,t) ,
and Eq. 5.40 is integrated, the average, y(7)y(E) , is computed to be

y(t)y(e) = g {:61 + 3T2(2T-T-g) + 2T3(T-T)(T—§)

- 2(213-@)('1‘-':)LL - 3(2T-T-§)(T-'r)2} for 1<t (5.41a)

g{6g + 3°(2T-1-£) + 2T°(T-7)(T-t)

- 2(T-T)(T-§)u - 3(2T-§-T)(T-§)2} for ©t (5.41b)

%{37 + 5T2(T-T) + TZ)(T-T)2 - (T-‘f)‘5

- 3(T-T)3} for T=¢ (5.41c)

The double integral required for the evaluation of J2 given by
Eq. 5.27, is now found by substituting Eq. 5.37 into this integral and

performing the indicated integration.

In summary, the procedure for evaluating the cost due to the factor

plu(t),u(t)lofu(r)lolu(t)] is as follows:
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r u(£))] is evaluated from Egq. 5.37 where
a) f is given by Eg. 5.38 where
1) 9(r) = 2, (1)
2) J(1)y(e) is given by either Eq. 5.4la or 5.41b
3) oly(7)] is given by the square root of Eg. 5.klc.

2. The above expression for E[u(t)u(t)] is substituted into
the integral of Eq. 5.27 and the integral is evaluated.

3, The term given by Eq. 5.28 is computed.

4, The sum of the results of step 2 and step 3 is the resulting

cost.

Because exp(-x2/2) is not integrable in closed form, numerical

methods must be used to evaluate the double integral of Eq. 5.27.
5.4 CRITICAL EVALUATION OF THE CONTROL SCHEME PROPOSED IN SECTION 5.2

In order to test the advantage of the scheme of Section 5.2 over
the open loop scheme which does not consider the effects of the noise,
it is only necessary to compare the savings in cost, Jl » given by
Eq. 5.15 to the cost incurred by the term involving the autocorrelation

of the control signal which is given by Egq. 5.27.

It will now be shown that there are cases when this scheme results
in a substantial reduction of the final state variance and that this
scheme approaches the true optimal as the ratio of noise power to control
power increases. Given an initial state, it is first necessary to
investigate the effects of a change of G on the net cost when using

the scheme presented in Section 5.2.

By considering first Eq. 5.27, which is the cost due to the fact
that the control signal is correlated in time, one can see that only the
double integral of this equation can possible change as a result of a
change in G since the remaining term is independent of G ; therefore,

only the double integral is now considered.

When the expression for the standard deviation c[y(T)] s given by
Eq. 5.23 is used, Eq. 5.22 can be written
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Ay(7)
Ve N
g(T

where g(T) is a function not dependent on G . Since u(T opt depends

only on k(t) , for a fixed initial state Ag(r) must be varied as

k(T) =

G is varied so that Eq. 3.5 is still satisfied. One can define a new
adjoint variable as X2(T) where Xz(T) = K2(T)/ G . With this
definition for Xe(r) s Eg. 5.42 may be written

(1)
k(t) = ~=05) (5.42a)
Since the initial conditions of Xg(T) determine E[u(t)] which

in turn determines the state x(o) , it follows that i2(1) or equiv-

alently the ratio kg(r)/ G must bhe fixed for any given initial state

z(o) . Therefore in the following development, the initial conditions

of the adjoint variable, Xe(r) s are adjusted so that the ratio

%2(1)/\/6- is unchanged as G is varied.

It is now necessary to investigate the consequences of such a

change in G on the other important variables.

When Egqs. 5.41a, 5.41b, and 5.41c are used, the equation for f ,
Eq. 5.38, can be rewritten

(7)
- T, )z(T
%—G £,(7,8)2(7)

£,(7,¢)

f = (5.43)
where fl(r,g) and fg(T,g) are functions not involving G . Since
() = KE(T) , and since the ratio RE(T)/\/E—_remains constant, then the
ratio 9(1)/\/5' also remains constant, so that as G 1is varied f
remains constant. Therefore as G is varied and Ke(r) varied so as
to satisfy the constraints given by the initial state, the cost from the
double integral term involving the autocorrelation of the control signal
is unchanged. The total cost caused by the autocorrelation of the con-
trol signal is thus seen to be independent of G for a given initial

error state.

However, from Eq. 5.24 it can be seen that the change in cost as
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a result of correlating the signal with the noise becomes more negative
as G increases. Therefore; there exists a critical value of G such
that for lower values of G it would be best not to use this scheme
since the open loop scheme results in a smaller variance; however, for
larger values of G , the scheme of Pection 5.2 results in a net decrease

in the variance of the final error state.

Figure 5.2 shows the various costs as a function of G for the

following condition:

xl(o) = 13.60
xg(o) = -3.16
T = 6.00

where the "critical" point occurs at G = 0.65

In Figure 5.2, the solid line is drawn by using values computed
from the method of Section 5.3. The experimental points, denoted by
the small triangles; were obtained by using adigital computer simulation
of the system. At each of the points, there were 150 runs used to
determine the variance of the final state, which is the performance
criterion for this system. The computer program was a digital simulation

of the system of Fig. 5.1.

At this point it is conjectured, but not proven, that a better
solution to this problem might be found by the use of the information
gained during the computations of the various quantities described in
Section 5.3. The control scheme of Section 5.2 neglected a term of
the cost, J , since the probability distribution of v(t) was not
exactly known at that time. In this section, it is shown that this
term of the cost contributed a fixed amount independent of the noise
power, G , so that for small values of G the scheme of Section 5.2

results in a poor control scheme.

A better estimate of the probability distribution of v(t) can be
made if the information gained during the computations discussed in
Section 5.3 is properly used. This better estimate will allow one to

consider the effects of the neglected term.
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200 T

Control scheme is
independent of the
input noisej; i.e.
the scheme is open
loop.

+

150 7 7

/ Theoretical cost
using the control
scheme of Sec. 5.2.

-t

100

50 . AZfz_The small triangles are the results
obtained from a digital computer
simulation of the control scheme of
Sec. 5.2,

4 [
I T

1.0 2.0 3.

-t
-

o T

L.o 5.0

SYSTEM: %(t) = u(t) + w(t)

DATA: xl(o) = 13.60 , xg(o) =-3.16, T=6.00, wtiw(t) =
GB(7-¢)

FIGURE 5.2 COMPARISON OF TWO CONTROL SCHEMES WHEN THE OBJECTIVE

IS TO ZERO THE AVERAGE VALUE OF THE FINAL STATE AT
A FIXED TIME
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With this new estimate of the distribution of v(&) , a new control
law can be found which minimizes the performance criterion, J¥* . For
this new control law, the resulting cost is computed. If there is an
improvement, another iteration cycle might be tried. If the cost,
computed by the use of Eq. 5.9a, is found to be within design specifications,
then the problem is solved and that control scheme can be implemented.
In a sense then, this procedure is equivalent to an iterative scheme

with the solution of Section 5.2 used as an initial condition.

The following alternative method describes how the information
obtained from the solution given in Section 5.2 can be used in an
attempt to find a better control scheme; that is, to reduce the cost
even more than the reduction; if any, accomplished in that section.
It is shown by a digital computer simulation of the resulting system
that this scheme also gives very good results when the noise power,

G , is small.

For this development, the random variable y{t) as given by Eq.
5.2 will include the effects of the term, u(t) . In order to
differentiate this random variable from the one used in Section 5.2,
the random variable y(T) will be used where

T
7(0) = [n(r,e) Tu(e) + w(s)lag (5.14)
0

where h(t;¢) is given by Eq. 5.12b.

With this definition for y(t) , then that part of Eq. 5.9awhich

can be affected by minimization can be written

T
I = [ u(e)y(r) ar (5.45)
J
where T
u()3(1) =fh(r,g) NOEEOIFGE: (5.46)

0]

With this definition for y(T) , the total cost given by Eq.5,95 is
given by
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T
3 ’ —_— 1 ”
- e{%- : T} r2 [u(n) 7o) - p (00 DFMyo) - (5.0m)
0

From the development in Chapter IV it is necessary that the probability
distribution of ¥(T) be known. It is again assumed that the random
variable u(g) + w(g) is nearly gaussian so that ;(T) is gaussian.

It is important to note that this is a much weaker assumption then that

one which is used in Section 5.2 where the average value of u(T) is

used in place of u(T) . In this case the assumption is made that y(T)

is gaussian and not that u(t) + w(t) is gaussian. The signal u(g) + w(t)
is essentially passed through a filter with weighting function, h(T,g)
Since the action of this filter is similar to a summing process, the

output tends to become more gaussian than the input (Ref. 8). The

random variable, ;(T) s 1s assumed to be gaussian with mean E(T)

. ~2
and variance o (T) where,

T
aw>=jkug>ﬁﬁ7% (5.18)
0
and
F(1) = 5°(x) - 52(x) (5.49)

The mean squared value, ;2(1) s 1s given by

T 17T

7(1) =\/ﬁ/ﬁh<r,g>h<r,m> (e w ()T Ta@) (@) T dpat  (5.50)
00

which can be simplified to the expression
T

3
§%ﬂ=e/hu¢x[huw>mwm@7+ﬂwu91w@
0 0

T

2
+ th (7,t)ae (5.50a)
0 «

The procedure which will be used in an attempt to improve the

system assumes that the mean and the variance of ;(T) are known and
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then uses the same method as was used 1in Section 5.2 to find thc cptimal
control law. Since ;(T) is a function of this derived control law,

the actual mean and variance of ;(T) can be computed once this control
law is known. If these actual parameters agree with the assumed para-
meters then the problem is solved and the control scheme can be implemented.
If these parameters disagree, then another iteration cycle may be used;
however, in this cycle the computed parameters of the last iteration

cycle are used. There is no proof of convergence given here; however,
toward the end of this section a method is proposed so that this iteration

scheme need not be used.

The procedure that one might use to estimate the parameters of the

distribution of y(7) will now be discussed.

A rather crude estimate of these parameters can be made if one uses
the function E?TS given in the previous cycle. With this function,
the mean value function, E(T) , can be obtained from Eq. 5.48. An
estimate of y2(T) can be made by only considering the last term of
Eq. 5.50a. These estimates will be very close to the correct values
when the noise power, G , is large. VWhen G 1is small, the above
estimate of ;2(1) may be very poor. In an attempt to make a better
estimate, a method is proposed which uses a forward iteration scheme.
Since it is felt that the methods used for obtaining these estimates

are not essential to this study, this procedure is presented in Appendix A.

At this time, it is assumed that a very good estimate of the mean
value function, m(T) , and the variance o(7) , has been made and

these estimates will now be used in the ensuing development.

Since it is assumed that the distribution for y(T) is known, the
procedure developed in Chapter IV and later used in Section 5.2 can be

used to minimize the performance criterion given by Eq. 5.45, 1

The expression for E[u(t)] given by Eq. 3.4lka can be written

E[u(7)] = —pk fxp _ L) 'fn(f’]g}z[u<r>|§<r>1 a5(t) (5.51)
Ve:«?(r) J 282(":)

The new variable, (t) = [;(T) - ;(T)]/g(r) , reduces Eq. 5.51 to
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Elu(T)

f exp[ ]E[u('r)lc 1)z(1) + m(7)laz(x) (5.52)

From Eq. 4.19, it follows that

TR - —_\/2:1-;?—) T(t) exp [ [Y(T) - m( )] ]E[u(m;(r)] a5 (1)
T ol T

(5.53)

The same substitution that led to Eq. 5.52 can be used to reduce Eq.
5.53. With this substitution, Eq. 5.53 becomes
[o0]

a(25(E) = () == _:[exp (- £()/2 Jelu(®)[5(x) £v) + a(x)] az(r)

~ ot 2
%%%2 u/ A1) exp [} %Eglg]EHu(T)|a'(T)Z(T) +m(7)] aA7)

~ g )
- AEl()] + H [ () exp [ %ﬁ]muunawz(rwﬁ(r)] az()
{;_“«3/ (5.54)

Since E(T) and E(T) are assumed to be known functions, Eq. 5.54

may be first minimized with respect to the correlation by letting

-1 if z(t) > k*(t)

Elu(t)o(t)z(t) + mlt)]

(5.552)
= +1 if z(t) < k*¥(t)
or equivalently
Elu(t)|y(7)] = -1 if l(T)—N“—“l(—Tl> k*(7)
o(%) (5.55b)

+1 if iill_:jiill < k*(T)
o(1)

where k*(T) must be determined from Eq. 5.52. With the function
[U(T)|G(T)Z(T) + E(T)] given by Eq. 5.55a, Eg. 5.52 becomes
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Elu(t)] 4/2 f exp | - 208 Jag(e) (5.56)

Therefore k¥*(t) is that function of E[u(7)] given by Egq. 5.56.

When Eq. 5.55a is substituted into Eg. 5.54, it follows that

- 25 () 2
a(1F(5) = §(x) Bla(o)]- = xp[k—g—‘—l] (5.57)

2n
Since ;(T) and E(T) are assumed to be known functions and
since k* (1) is a function of E[u(7)] , it follows that Eg. 5.57
is a function of only E[u(t)] . Therefore, if this function, u(T)y(T)
is substituted into Eq. 5.45, the Maximum Principle can be used to
minimize the performance criterion, 3 , by the proper choice of the

1
function, E[u(t)] . The Hamiltonian for this system becomes

= 2
H(t) = - m(t) Elu()] + %%é;l exp [} k*ggrj]
b8

+ 2,(7) Elu(0)] + A (7)xy() (5.58)

This Hamiltonian can now be differentiated and equated to zero to
find the optimal value of k*¥(t) which in turn is equivalent to finding
the optimal value of E[u(t)] . Since the only restriction of k*(7)
is that it satisfies Eq. 5.56 and since the right hand side of this
equation is bounded by +1 and -1 , there is no restriction of the

allowable domain of k¥*(t)

(s o = *2 T *(T
T = () - al) - \7_ o(1) exp [ LQL—’}*(T) )

o dE[u(~
(5.59)

However, after both sides of Eq. 5.56 are differentiated with respect

to E[u(t)] , one obtains the eguation

2
VE o[-0 T g o)
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the optimal value of k*(1)

When Eg. 5.59a is substituted into Eg. 5.59, the expression for

k*(T) =

A (1) - m(r)

a(t)

is found to be

(5.60)

When Eg. 5.55b and Eq. 5.60 are combined, the optimal control law

specifies that

Elu(t)]|y(7)]

it

I

-1 if y(t) > A, (1)

+1 if ;(T) < Kg(r)

(5.61a)

(5.61b)

It is thus seen that in order to generate a control signal having

the required statistical properties, it is only necessary that the

random variable y(7) be compared to kg(T) and the control u(Tt) ,

be determined on the basis of this comparison.

The correct initial conditions on the adjoint variable, Ke(r) ,

avefound by evaluating the integral of Eq. 5.56 with the value of k*(t)
With this substitution, Eq. 5.56 can be written

given by Eq. 5.60.

Elu(t)]

2

VEn )

2

VéEn 0

The two constants A, (o) and %l(o) are found by evaluating the

%2(1) - a(r)

o(t)

2, |~
exp (: f;éll-J dz (1)

My(0) - A (0)T - f(r)

o(1)

(1)

j]dz('r) (5.61c)

constraint equations, Eq. 3.5,which for this l/s2 plant become

T

fE[u('r)] ar =

0

T

Jf TE[u(t)] dr

0

x(0)

xl(o)
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and ;(T)

When the acscumed valnes R
cg e values AN ;

! umed values, m(7) are nged; the initial
conditions of the adjoint variable can be found. Since this adjoint
variable is used as a comparator for ;(T) 5 the actual values of the
mean and the variance of y(T) can now be computed using the method
proposed in Appendix A. If the agreement between the actual parameters
and the assumed parameters is close enough, the problem is solved; if
not, another iteration c¢ycle may be used. Convergence of this procedure
requires that the values of the assumed parameters be very close to the

actual values.

A method of solution which does not require this estimate of m{T)
and E(T) will now be discussed. It is shown in this chapter that the
adjoint variable completely specifies the control law; it is only necessary
that the function;, ;(T) s be generated and be compared to the adjoint
variable so that the value of the control signal may be determined.
This fact together with the principle of superposition allows the space
of initial conditions of the state variable to be mapped upon the space
of initial conditions of the adjoint variable. The principle cf super-

position may be used since the dynamical system is linear.
The procedure used for this type of solution is as outlined below.

1. The state initial conditions are assumed to be zero, so that

the system of Eq. 5.1 has the solution
T
E(T) =\/A eF(T—T)D[u(T) +w(t)] dar (5.62c)
0

2. For a given nolse process, w(o) ; and an assumed adjoint
variable, this system is simulated on a computer so that the
control is optimal in that the requirements of this Section
are satisfied.

3. For this same adjoint variable, enough runs are made so that
the average value of the final state may be determined.

4. Since the actual problem required that this average value of
the final state be zero, the principle of superposition can
be used to determine the correct initial conditions of the

states so that this final value is zero. From Eg. 3.5 it
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therefore follows that the correct value of the 1nitial state

can be determined from the relation
T

x(o) = - e-FT\/FeF(T-T)D u(t) dar (5.62d)
0]
where from Eq. 5.62c¢c it follows that

x(0) = - e x¥T) (5.62¢)

where 5*(T) is the average value of the final state as

determined by the computer runs of Step 3.

This procedure was used in order to determine the goodness of this
control scheme. Approximately 150 computer runs were made on each system
for each assumed adjoint variable and for each value of the noise power,
G . The output of the computer was the corresponding initial states and

the variance of the final states.

- The initial states found from the above computer study were then
used to determine the adjoint variable for the control scheme of Section
5.2; that is, the control scheme which neglected the term involving the
correlation of the control signal. In Table I , a summary of the results
is presented. For the purpose of comparison the table is divided in
two sections. The first section, which includes System "A" to "E"
inclusive, is composed of those systems whose corresponding state
initial conditions are very nearly the same. The initial conditions of
those systems in the second section, Systems "F" to "K" inclusive, are
likewise nearly the same but are substantially different from those of
the Tirst section. It can be noted that the systems of Case II behave
poorly as G becomes smaller; this is in agreement with the presentation
of Section 5.3. In contrast, the performance of the systems of Case III

improves significantly for the lower values of G .

Figure 5.3 and Figure 5.4 are included so that the time histories

of the various functions mentioned in thig section can be observed.
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10.0

E[y(t)]

5.0
+ - ' + + b
1.0 2.0 3.0 4.0 5.0 6.0
-5.0
-10.0
FIGURE 5.3a MEAN AND STANDARD DEVIATION OF y(t)
Elu(t)]
1.0
/ﬂ\/’T“’/\v/-A — } i -
- 1.0 2.0 3.0 1.0 5.0 6.0 ¢
-1.0
FIGURE 5.3b E[u(t)]
E[u(t)y(t)]
5.0
7o 50 60 °

FIGURE 5.3c E[u(t)y(t)]

FIGURE 5.3 GRAPH OF THE VARIOUS TIME HISTORIES OF CASE ITI,
SYSTEM "D" , TABLE I
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E(F(t)] 5 oly(t)]

10.0

oly(t)]

E[y(t)]

FIGURE 5.4ta MEAN AND STANDARD DEVIATION OF T(t)

Efu(t)]
1.0
0.5
~ WA"K-/\"{\VA : —+ et
1.0 2.0 3.0 4.0 5.0 6.0
-0.5
—l;O
FIGURE 5.4b E[u(t)]
E[u(t)y(t)]
5.0

FIGURE 5.4c E[u(t)F(t)]

FIGURE 5.4 GRAPH OF THE VARIOUS TIME HISTORIES OF CASE II1, SYSTEM
"J" , TABLE I
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In both of these figures the noise power is identical; however, the

initial states are different.
2
5.5 PHYSICAL REALIZATION FOR THE 1/s” PLANT.

Theoretically it appears that a reasonably good system has been
derived by the procedure of Section 5.4; now the system must be realized.
It is necessary that the signal ;(T) be made available, where ;(T)

is given by Eq. 5.44 which is rewritten here for convenience,
T
7(0) = [ [(m-o)(m-e) + 11 [u(e) +wu(e)] ag
5 4

T

T
= (T-1) (T-¢) [u(e) + w(e)lae + [ [u(e) +w(E)] a6 (5.63)
d/p 5/h

In order to realize this system, it will be advantageous to rewrite

Eq. 5.63 in the form

y(t) = (T-1)y,(7) + y,(7) (5.64)
where

T
yi(7) = [ (T-8) [u(e) +w(e)] at
J

T
vo(T) = [ Tu(e) + w(e)] de
J

For this second-order plant, the system equation, Eq. 2.8, can be

evaluated giving the two equations for the state of the plant

x(%) = %,(0) + [ [u(s) + w(e)] at (5.650)
0

T
x, (1) = [xy(0) + txy(0)] + [ (x-8) [u(e) +w(t)] ag (5.65b)
o}

Therefore, with the use of Eq. 5.65a and Eq. 5.65b, the variables, yl(r)
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w(t)

FIGURE 5.5 REALIZATION OF THE CONTROL SCHEME OF SECTION

n |-

x,(t)
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and yQ(T) , can bc cxprecsed in terme of the state of the plant since
x,(7) = x,(0) +y,(7) (5.66a)
6 () = xy(0) + Txy(0) + yy(¥) - (T-r)y, (%) (5.66b)

Then Eq. 5.66a and Eq. 5.66bare solved for yl(r) and yg(r) ; yielding

v (1) = x)(7) - [x,(0) + mx,(0)] + (T-7)y,(7) (5.67a)

vo(7) = x,(7) - x,(0) (5.67b)

When the above equations are substituted into Eg. 5.64, the function
v(7) 1is given by
y(7) = (T-1)x (1) + [(T-7

- [(T-1)xy(0) + (7 = Tt + 1)xy(0)] (5.68)

)+ 11 xy(7)

Since the last term on the right hand side of Eq. 5.68 is linear in 7
as is the adjoint variable; there would be no difference between com-
paring y(T) with %g(r) then there would be comparing (T-T)xl(r) +
[(1-7)% + 11x,(t) to A,(v) where

~

Ro(1) = Ay (1) + (T-1)x (o) + (1° - T1 + 1)x,(0) (5.69)

It is to be noted that XE(T) is linear in T since )2(T) is
linear in T . With this definition for XE(T) » the feedback realization
of Fig. 5.5 results. Again it is assumed that the initial conditions of
the adjoint variable, ié(t) ; have been determined, possibly by the

procedure discussed in Section 5.4.
2 -
5.6 1/(s"+1) PLANT

The differential equation for this system is given by the

equation

2
id:_.é.t‘l + X(t) = u(t) + w(t) (570)
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or expressed in state notation

x(t) = Fx(t) + D u(t) + B w(t) (5.71a)
where
0O 1 0 0
F = 35 D= ;5 B= : (5.71b)
-1 0 1 1
and
Ccos t sin t
Ft
e = (5.72)
- sin t cos t _

Therefore, it follows that

F'(T-g)eF(T-T)

D'e D = sin(T-1)sin(T-¢t)+cos(T-T)cos(T-¢)

cos (T-¢) ' (5.73)

With the assumption that the noise process, w(:) , is again white,

the modified performance criterion for the system is given by

T
g, = [ u(r) y(v) ar (5.74a)
J
where T
T(r) =fcos (t-t) [u(g) + w(g)] a (5.740)
5 |

The procedure used for the l/s2 plant can now be used to find
the optimal control signal for this plant. The only modification to that
procedure is that cos(7T-t) is used in place of (T-1)(T-¢) + 1 for

the definition of h(T1,t) . Other systems can be similarly treated.
5.7 NON-WHITE GAUSSIAN NOISE AT THE INFPUT TO THE PLANT

The procedure used in this chapter in order to find the optimal
control signal when the input noise is gaussian and white can also be

used to find this signal when the input is gaussian but not white.
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Mathematically it is only necessary to replace the non-white noise by a

linear filter with white noise at the input.

It is well known, that colored, gaussian noise can be generated by
passing white gaussian noise through the proper linear filter. Therefore,
instead of the system of Fig. 5.6a being used, where %@(t) is colored,
the system of Fig. 5.6b can be used where the filter Hi is that filter
which causes the process, ;(-) s 1o have the same statistical properties
as the given noise process, ¥(-.) , when the input, w(t) , to this filter

is a gaussian white noise process with autocorrelation function GB&(t-t) .

2(t prany 2 w(t) | i w(t) PLANT x(t)

FIGURE 5.6a \ FIGURE 5.6b

FIGURE 5.6 STOCHASTICALLY EQUIVALENT SYSTEMS

When the representation of Fig. 5.6b is used, the procedure for
finding the optimal control signal when the input noise is colored can be
reduced to the procedure developed in this chapter for finding the
optimal control signal when the input noise is white. This procedure will
now be briefly described for the 1/s2 plant with exponentially corre-

lated gaussian noise at the input.

The system to be studied is shown in Fig. 5.7a, where the process,
%(-) , is exponentially correlated, zero mean gaussian noise. Figure
5.7b and Fig. 5.7c are systems which are stochastically equivalent to
the system of Fig. 5.7c. The state, XS(t) , is the value of the input
noise at time t , therefore, the value of this state at the final time,

T', is not to be a part of the performance criterion.

The system equations for the system of Fig. 5.7c are given by

x(t) = F x(t) + D u(t) + Bw(t) (5.75)
where
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+
¥ s = )
FIGURE 5.7a
u(t)
+
, t
w(t) 1 w(t) + 1 ‘Xg(t) 1 x, ()
S+1 s s
FIGURE 5.7b
u(t)
+ )
w(t) 1 XS(t) 1 x2(t) 1 xl(t)
3 s S RN
+
FIGURE 5.7c

FIGURE 5.7

STOCHASTICALLY EQUIVALENT REPRESENTATIONS
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1 0 0 0
o 11]; p=]1]|; B-= [:o:]
O ""l O |l

- ¢11(t-T) ¢12(t-1) ¢15(t-1)"
¢21(t‘T) ¢22(t_T) ¢23(t‘7)

oy (t-1) P (t-1) g (t-1)

=
H

{ 1

coo

and

eF(t-T) B

where ¢ij(t-1) is the output of the i'th integrator at time, ¢t ,
due to a unit impulse applied at the input of the j'th integrator at
time, T , with zero initial conditions everywhere else. The values

of these quantities can be calculated from an inspection of Fig. 5.7c.

¢ll(t-r) =1

¢12(t-7) = t-1

g 5(t-7) = exp [-(t-7)] + (t-7) -1

¢, (t-1) =0

goo(t-7) = 1

Bos(t-1) = 1 - exp [-(t-7)] (5.76)
g (t-1) =0

.(t-1) = 0

Pos(t-1) = exp [-(t-7)]

The performance index, J , is given by Eq. 3.28 where in this case

~1 O 07
Q = Lo 1 OJ (5.77)
0O O O
The matrix, @ , is not the identity matrix since only the variance of
of the states xl(T) and xg(T) are of any importance.
The constraint equation given by Eq. 3.5 is still applicable;

however, since xSZtS is zero by assumption, the vector equation,
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Eq. 3.5, gives only two non-trivial constraint equations. These two
equations are identical to the constraint equations used in the previous

sections of this chapter.

with y(1) defined by Eq. 4,10, the procedure of Section 5.4 can
now be used to find the optimal value of the comparator, $(t) ; which
in this case will again be the adjoint variable, KE(T) . The procedure
for determining the initial conditions of this adJjoint variable is

similar to that discussed in Section 5.4.

Thus the system has been optimized; however, the ficticious noise
process, w(.) , was used in the development. Realization of the system
requires that the actual noise process, @(.) , be used. This realization

scheme will now be discussed.

The signal ;(T) given by Eq. 4.10 must be made available. With
the help of Eqg. 5.75, Eq. 4.10 can be expanded

T
7)< | {0y (10) By (36) + By (11) B, (T-0)] w(e)
0
+ [P, (1) B (T-8) + @, (T-7) B, (T-6)] w(e) ) a
- 95, (1) [B,(ee) u(e)
0
“ oy (1) [y (x-2) u(e) at
0

iy (20) g (1) [ (e8) we) ag
0

t P (T-7) Byg (T*T)f¢23(r-§) w(g) a (5.78)
0

The system equation, Eq. 2.7, has the solution given by the vector

equation, Eq. 2.8. From this solution, the values of the states, Xl(T)
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and Xg('l) can ve [{ound.
x,(7) = ¢ll<r> x(0) + §,,(%) x,(0) + #, (%) x,(0)

Jf¢ (v-8) u(e) at +\f¢13 T-¢) w(e) at (5.79a)
x,(1) = B,,(1) x,(0) + B,5(7) x5(0)

T T
+ [ B, (1-8) u(e) a& + [ @, (v-&) w(e) at (5.79b)
G/F 22 6/P 23

Equation 5.78 and Egs. 5.79 are combined to yield the equation for
;(T) in terms of the state of the plant and the initial conditions
xl(o) s x2(o) , and XS(O) . The state, XS(O) , is the value of the

noise at the initial time.

y(1) = #,(T-7) B, (T-1) x, (1) + B, (T-7) @ (T-1) x,(7)

+ 1, (T-1)[8, ,(T-7) - ¢15(T-T)]k/p $o(7-€) u(e) at
0

+ Bop(1-5) 1By (2-%) - By ()] [ G, (-8) u(e) at
o

- B,(T-7) B (T-7) [8),(7) x,(0) + (%) x,(0) + B, (7) #(o)]

= B (T-1)P, (T-7) [ 5(7) x,(0) + f4(7) (0)] (5.80)

The realization of the system can thus be based on Eq. 5.80. It
is to be noted that the value of the noise at the initial time is required
for this realization and therefore some means must be found for obtaining
this value. In the white noise case, this quantity 4 s not necessary
since the future values of the noise are independent of this initial
value; however, since the noise is now correlated, this value becomes

a8 necessary part of the control scheme. This value essentially provides

- 71 -



N (t)

vl

e, ()

w |+

n i

FIGURE 5.8 REALIZATION OF THE CONTROL SCHEME OF SECTION 5.6
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the necessary bias that the function ;(T) must have in order ihai ilhe
effects of the future predictable part of the noise may be taken into
account in the control scheme. It is important to note that this initial
value of the noise is not needed in the computations for the optimal

control law, it is only needed for the realization.

With this initial value of Q(t) available, the system can be
realized as shown in Fig. 5.8. The values of the impulse response

functions, ¢ij(t) , are given in Eq. 5.76.
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VI. GENERAL PERFORMANCE CRITERION
6.1 Development

The investigations of Chapters IV and V treat those cases for which
the performance criterion is either minimum fuel or minimum final state
variance. In this chapter it will be shown that the techniques presented
in the aforementioned chapters can be used to an advantage in the general
case in which the performance criterion is a combination of both minimum
fuel and minimum final state variance. The results of the preceding
chapters are used as a guide in the development of the theory as presented

in this chapter. The following theory should be treated as a conjecture.

The performance index is given by Eg. 2.6. Again in this chapter,

a scalar control is assumed so that Eq. 2.6 can be written

T
J=E | |ut)|at + BIx'(T)Q x(T)) (6.1)
J

The constraint equation, Egq. 5)+, holds and is repeated here for

convenience.
T
f eF(T-t)D u(t) dt = - eFTE(o) (6.2)
0

For simplicity it is assumed that the matrix, Q , is a diagonal
matrix of identical diagonal elements so that Eq. 6.1 may be written
T
J=E f lu(t)lat + gx'(T) x(T) (6.3)
0
where p 2 O .

Using the procedure developed in Chapter V, Eq. 6.3 may be expressed

in the following equivalent form
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T T
J* = E \/Flu(t)ldt + 5\/P u(t) y(t) dt
L O 0

_ gl [ a®)] + 8 u(e) y(8)] at (6.4)
Qf

—

where y(t) 1is given by Eg. 4.10 repeated here for convenience

t
y(t) = [ [pref (T-E)F(T-t)n e
J

eF'(T—t)eF(T—g)B w(t)] as (6.5)

+ D¢
Minimization of J with respect to the control is equivalent to
the minimization of J¥ with respect to the control; therefore Eq.

6.4 ill be used as the performance index.

A procedure similar to that used in Chapter IV and V can now be
used to minimize J¥ . This procedure is demonstrated here by the

following example.
6.2 Example

In order to demonstrate the procedure, the system given by Eg. 5.1

is used as an example. This equation is repeated here.
X(t) = u(t) + w(t) (6.6)

When an equivalent system is defined as in Chapters IV and V , the
Hamiltonian for the system of Eq. 6.6 and the performance criterion of
Eq. 6.4 is given by

H(t) = - ElJu(t)|] - BE[u(t)y(t)] + A (t) Xy(t) + A, (t) Blu(t)]

E {0, (¢) - py(e)Tue) - lu(t)] } + A (8) %,(6)  (6.7)

- 75 -



[t is again seen that %E(t) is linear in time. 1In order to
naximize H(t), over all possible values of the control, it is only
necessary that the first term of Eq. 6.7 be maximized; therefore by

defining H*(t) such that
ie(e) = E{ D0 () - B y(£)] u(t) - |u(e)]| ) (6.8)

then the maximization of H(t) is equivalent to the maximization of

H*(t) where %2(t) is linear in time.

Equation 6.8 can also be written
i1 (t) :/E {([%g(t) -8 y(t)] ult) - u(t)] 7 |y(t)}p[y(t)]dy(t) (6.9)

From the definition of y(t) as given by Eq. 6.5, it can be seen
that y(o) ie zero; thercfore y(o) 1is deterministic co that the
probability density function of y(o) can be considered to be a unit
delta function at y(o) egual to zero. Equation 6.9 can thus be

evaluated for t equal to zero.

H*(o) = %2(0) u(o) - Ju(o)] (6.10)

In order to maximize H*(o) s 1t is therefore necessary that

u(o) = 1 when %O(o) > 1
u(o) = -1 when %2(0) < -1 (6.11)
u(o) = O when |%9(0)| <1

o

Therefore, for a given adjoint variable, the control signal at the
initial tiue is deterministic. This fact allows the remaining statistical

properties of the control signal to be computed.

Since y(t) 1is a smooth function, it can be assumed that the
“tatistica! propertics of }(t) do not change too rapidly. This is

the assuroticon used in Chapter V and shown to be true by a computer
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simulation of the system. Since the statistiics ol y{o) arz known, thc
statistics of y(t) for any time can thus be computed in forward time

by a method similar to that used in Chapter V. By assuming that the
probability distribution of y(t) is similar to the distribution of

y(t-¢) and that the probability distribution of y(t-¢) is known,

then in order to maximize H*(t), it is only necessary that the conditional
expectation factor in the integrand of Eq. 6.9 be maximum for each y{t) .

This can be accomplished by using the following scheme.

u(t) = 1 vwhen 7\2(1:) -By(t)>1
= -1 when ?\E(t) -8 y(t) < -1 (6.12)
=0 when {7\2(t) -py(t)] <1
or
u(t) = 1 when y(t) <é [7\2(t) - 1]
= -1 when y(t) > % [%Q(t) + 1] (6.13)
=0 when % [?\2(t) - 1) < y(t) <é [)\g(t) + 1]
The expression for the average value of the control signal can be
vritten
u(t) = [ Efu(t)|y(t)] ply(t)] ay(t)
—é—[%g(t) - 1] o
- ply(1)lay(t) - | ply(t)lay(c) (6.14)
-0 -Bl-[xg(t) + 1]

For a given adjoint variable, it is thus theoretically possible to compute

the value of u(t> , since the probability distribution of y(t) can

be computed by using the scheme similar to that scheme of Appendix A.
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This computed value of ETET can be used together vith Eq. 6.2 in order
to compute the initial states corresponding to that particular adjoint
variable. Alternatively, the method of Chapter V which simulates the
syctem on a computer can also be used to map the space of initial
conditions of the adjoint variable on the space of initial conditions

cf the state variable.

At this point it will be conjectured that Eq. 6.12 represents the
solution to not only the relay control problem but also to the more
general class of problem vwhich admits all bounded control functions.

At no point in the derivation of the optimal control law was it assumed
that the control signal vas constrained to be the output of a relay.
The only assumption needed, is that the control signal be bounded.
Eguation 6.12 reqguires that the optimal control be a relay control;
hovever, if the performance index would be based on the square of the
value of the control signal irstead of the absolute value, the optimal

solution weuld e given Ly
u(t) = sat [A,(£) - B y(t)]
vhere sat [x] =1 for x> 1
= -1 for x< -1
= x for |X| <1

It is also pointed out that the assumption that the noise is
gaussian is not used in this chapter; therefore, the solution of this
chapter holds for any noise process which can be represented as the
output of a linear filter :'hen the input is white. The assumption

that the noise is gaussian is only needed in order to simplify computations.

To sho that the results of this general procedure reduce to the
results of the speclal cases covered in Chapter IV and V, it is only
necessary to adjurt the factor, g , of Eq. 6.3. When this factor
approaches infinity, 1t can be seen that the cost from the fucl term
given by the integral of Eq. 6.3 is negligible compared to the cost

of final state errors so that Eq. 6.3 reduces to the performance index
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of Chapter V. The control signal is determined from Eq. 6.13, which for
B approaching infinity becomes

u(t) = 1 when y(t) < X2(t)

I

(6.15)

-1  when y(t) > 7\2(1:)

where Xg(t) = Xg(t)/ﬁ , and the term, l/B , 1s negligible. Since

'ig(t) is linear in time and since the definition for y(t) is identical
in both Chapter V and this Chapter, this control scheme is identical to
that scheme of Chapter V.

When the factor, B , is zero, Eg. 6.3 reduces to the performance
index of Chapter IV. For B equal to zero, the control scheme can be

found from Eg. 6.12 where

u(t) = 1 when %g(t) > 1

I

-1 when Kg(t) < -1 (6.16)

0 when |?\2(t)| <1
This is identical to the control scheme of Chapter IV.
6.3 Summary

In this chapter, a physical realization of a control scheme is con-
Jectured such that this scheme is optimal in the sense that the performance
criterion, based on both fuel expenditure and final state errors, is
minimized. Rt isconjectred that the solution is not only applicable to those
cases in which the control signal is constrained to be the output of a
relay but also to those cases in which the only constraint on the control
signal is that it be bounded. Also the system is assumed to be disturbed
by noise which need not be gaussian; however when the noise is gaussian,
the required computations are simplified. The realization again requires
that the function, y(t) , be formed; however, for this case, y(t) is
compared to the sum of the adjoint variable and a term which is proportional
to the relative significance of the term of the performance criterion
involving the final state variance. The control signal is then generated

on the basis of this comparison.
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SUMMARY AND CONCLUSIONS

Pontryagin's Maximum Principle offers a feasible method for the
solution of control optimization problems when the disturbances affecting
the performance of the system are known functions of time. At this time
there is not a satisfactory "Maximum Principle" available for those

cases where these disturbances are random functions of time.

When the control signal is restricted to be the output of a relay,
it i1s shown that in some cases the stochastic control problem can be
reformulated so that Pontryagin's Maximum Principle can be effectively

used.

This method of solution is applied to the problem of finding a
physical realization of a relay control system such that this control
drives the plant to a predetermined state at a given time in the future.
Durirg the interval of control, the plant is assumed to be disturbed
by gaussian noise of known spectral density. The performance criterion

in this case is the minimization of the variance of the final state.

The solution requires that a function, ;(T) , be formed and that
this function be compared to the predetermined adjoint variable of the
Maximum Principle and on the basis of this comparison, the control signal
is determined. 1In this scheme there is again the well known problem of
determining the initial conditions of the adjoint variable. However,
once these initial conditions have been determined, the realization of

the system is a straight-forward procedure.

It is shown that the system can be realized as a very simple feedback
control system. The system has time varying gains; however, these gains

are easy to implement.

There is no guarantee that the resulting system is optimal, but

the digital computer simulations indicate that the systems perform well.

It might be mentioned that even though the calculations that are
required to determine the initial conditions of the adjoint are lengthy,
the realization is a very simple system. Therefore the control system
itself may be very small and can thus be used where size and weight are a

criterion.
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it 1s then conjectiured thatv the technigues usced in this research cean
be used to determine the statistical properties of an optimal control
signal subject only to the constraint that the control signal be bounded;
that is, the signal is not a priori assumed to be the output of a relay.
Also, the system is assumed to be disturbed by noise which need not
necessarily be gaussian. The performance criterion for this case is a
combination of minimum fuel and minimum final state variance. The
solution again requires that a function, ‘}(t) s be formed; however, in
this case ;(t) is compared to the sum of the adjoint variable and a
term which is proportional to the relative significance of the term of

the performance criterion involving the final state variance.
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APPENDIX A

In this appendix, a computational scheme is proposed which will
enable one to make an estimate of the parameters of the distribution
of ;(T) as given in Section 5.5. This scheme uses a forward iteration
procedure and therefore will ordinarily require the use of a digital
computer. Since it was felt that an excessively large amount of computer
time would be required if this scheme was used, this scheme was not used
in the research connected with this thesis. However, for those interested

in this approach, the procedure is briefly described in this appendix.

In order to use this procedure, it is necessary to assume a set of
initial conditions of the adjoint variable, Kg(t) . For the described
procedure to converge, these assumed values should be close to the
optimal values which will later be obtained during the minimization
process. The values obtained when one uses the method of Section 5.2

may be used as a guide when these initial conditions are assumed.

From the definition of ¥(t) , given by Eq. 5.44, it is necessary
that ;(o) is zero. Therefore, the control signal, u(o) , will be
+1 if %2(0) is less than zero and will be -1 if %2(0) is greater
than zero. For a given adjoint variable, the variable, ;(t) , is a
function of only the input noise up to time + . This functional dependence
then gives the information needed in order to compute the mean and the

variance of the distribution of y(t)

With this mean and variance, the method of Section 5.5 is used

in order to find the optimal adjoint variable. If the initial conditions
of this adjoint variable are close to the assumed initial conditions,
then the problem is solved. If the difference between these two adjoints
is great enough then another iteration cycle may be used in order to
attempt to obtain better agreement; however, the adjoint variable which
was just derived is used in this cycle. There is no guarantee that this
process will converge; however, it is felt that the process will converge
if the assumed adjoint is close to the optimal adjoint. Just as in the
deterministic case; there is here also the well-known problem of deter-

mining the initial conditions of the adjoint variable corresponding to
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a set of initial conditions of the state variablc.

The function, ;(;) s belng the output of an integrator is relatively
smooth; therefore, the control signal which occurs at time t , will
be assumed to be a function of ;(t-e) s wvhere € 1is small compared
to the size of the time intervels used in the numerical iterations.
This makes sense also for the physical system, since there must be a
small delay Iin the action of the relay. The reader is advised to refer
to Pig. A.l in order to better follow the ensuing discussion.

As was previously mentioned, for a given adjoint variable the
control signel, u(o) s is deterministic. This fact allows the itermtion
scheme to proceed forward. It follows that m(o) = 0 , olo) = 0, u(o)

is specified, ue(o) =1, and ulo)w(a) =0 since w(a) =0 .

In the following discussion it is assumed that the time scale is
gubdivided into equal time intervals and that the value of the time at
the beginning of each of these intervals is simply denoted by the number
of the intervel, with zero being the number of the first interval. For
example, the symbolism, m(3) , denotes the value of themesn of the
function y(.) at the beginning of the third time interval. The value
of all variables are assumed to be constant during the interval. All
integrations over time will therefore be accomplished by the use of an

approximating sum.

Since u{o) is known, Eq. 5.48 can be used to find m(1) . _The
standard deviation, o(l) , can be computed from Eq. 5.49 where ;2(1)
is obtained from Eq. 5.50a. The values of ula)u(o) and u(o)w(o) are
the only terms required to evaluate Eq. 5.50a and these terms are known.
Therefore, the mean and the variance of y(1) is known, so that u(1l)
can be computed from Eq. 5.51 rewritten here for convenience in the
simplified form.

[+ ¢}

E[u(7)] f E[u(v) |¥(r)] p[F(r)] a5(%)

0

where E[u(t)|¥{(7)]

+1 if y(1) < xg(r)

-1 if y(t) > )2(1)
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and where ;(T) is assumed to be gaussian. It therefore follows that

m(2) can be determined by the evaluation of Eq. 5.48.

It is more difficult to obtain the value of ;2(2) given by Eq.
5.50a, which is required in order to determine the standard deviation,
3(2) . The procedure which will now be explained can be used for
determining the value of ;2(1) for any i . It can be seen from an
examination of Eg. 5.50a that this calculation requires the terms

w(k)u(j) where k and j are integers less than i .

The values of GYESE(ET can be found by the use of the procedure
developed in Section 5.3 for finding the effects of these correlation
terms. That procedure required that the distribution of the functions
v(kx) and ¥(J) is known and that the average of the product Fx)Y(3)
also is known. Since the mean and variance of the function y(-) have
been determined for k and j less than i , the distribution is

known. It will now be shown that there is also enough information to

calculate the average, ;(k);kj) . This average can be written
KA A
5050) = [ [ (s n(00,) TaleTwe)T Tale,)5(@,)] a0,
0 0
KA JA

=f fh(kA,wl)h(JA,wg) [ule, Jule,) + ulp Jwle,) + ule,)wie, ) dp, do,
0 0

kA jO
v6 [ [ nese, n(369,)800,0,) aao, (a-1)
0O 0

where A is the length of the time interval. The value of the averages
in the first double integral of Eq. A-1 have been previously determined;
therefore, Eq. A-l can be evaluated. Incidentally, this first double

integral must be considered as a double sum.

It follows that wu(k)u(j) can now be evaluated. Thus the variance
of y(i) can be determined if the term, u(k)w(j) , can be computed.
The following procedure shows that this term can also be computed. This

average can be written in the following form.
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W03 = fw(j)E[u(k)lwm}p[w(J)J»dw(J) (a-2)

where it is known that w(Jj) 1is gaussian with zero mean. Since the
process w(*) is white, it is necessary that E[u(k)|w(j)] be zero
for j greater than k . For j 1less than k , this conditional

expectation can be written

Elu(k)|w(3)] = plu(k) = 1 |[w(3)] - plu(k) = -1 |w(3)]

]

ply(x) < () (3] - pl¥(x) > A, (k) [w(3)] (A-3)

Therefore in order to compute the value of Eq. A-3 which in turn
allows Eq. A-2 to be evaluated, it is only necessary that the conditional
distribution of y(k) given w(Jj) be known. Since w(Jj) is gaussian
and ;(k) is assumed to be gaussian, the conditional distribution is
gaussian. In order to calculate the mean and the variance of this
conditional distribution, it is necessary that the parameters of the

distribution of y(k) and w(3) are known and that the average,

;(k)w(j) , is also known.

The parameters of the distribution of ;(k) have been previously
determined and those of the distribution of w(j) are given; therefore

it is only necessary to investigate the average which can be written

kA
Y(x(3) = [ [(T-ka) (T-9) + 1] Tul(e) + w(@) T w(3) dp (A-k)
0

Since w(@)w(J) is known to be G&(p-3J2&) and since u(@)w(j) has
been previously determined, Eq. A-4 can be evaluated and hence the average,

uik5wij5 s can be determined.

It has now been shown that the necessary information is available
for the computation of the variance of ;(i) . The iteration procedure
can thus be continued forward until the values of E(i) and E(i) are
known for all i

Figure A-1 presents a summary of the computational scheme presented

in this appendix.
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